Entzündung weckt Schläfer

Phagen attackieren das Darmbakterium E.coli, einen nahen Verwandten von Salmonella Typhimurium. Viele bakterielle Krankheitserreger wie Salmonellen-Stämme erhalten von ihren Viren neue Gene, welche die Evolution von Pathogenen vorantreiben. (Bild: Graham Beards, CC BY-SA 3.0)

Bakteriophagen (Kurzform: Phagen) sind Viren, welche Bakterien befallen. Die «Guten», die sogenannten lytischen Phagen, töten für den Menschen schädliche Bakterien ab und finden teilweise in der Medizin Verwendung; die «bad guys», die temperenten Phagen, hingegen übertragen ihre Gene in Mikroorganismen und verleihen ihnen dadurch neue Eigenschaften, wie etwa die Fähigkeit, ein Toxin herzustellen. Die Übertragung von temperenten Phagen gilt daher als treibende Kraft hinter der Entwicklung von Bakterien zu potenten Krankheitskeimen.

Forscher um ETH-Professor Wolf-Dietrich Hardt zeigen nun am Beispiel von Salmonellen, einem häufigen Erreger von Magen-Darmerkrankungen, dass die körpereigene Entzündungsreaktion die Übertragung von Phagen-Genen auf die Bakterien sogar fördert und damit die Pathogenität der Salmonellen erhöht wird. Ihre Studie erschien soeben in der Fachzeitschrift «Science».

Höchst effizienter Gen-Transfer

Um herauszufinden, wie schnell sich temperente Phagen innerhalb einer Salmonellenpopulation verbreiten, infizierten die Forscher Mäuse mit zwei verschiedenen Stämmen von Salmonellen. Der eine Stamm trug den Phagen «SopE-Phi», während er dem anderen fehlte.

Die Salmonellen lösten im Darm der Tiere eine Entzündung aus. Dies führte zu einer wichtigen Veränderung im Salmonella-Stamm, der Phagen-Gene in sich trug: Die Phagen-Gene wurden exprimiert, die Phage vervielfältigt und schliesslich freigesetzt. Dabei starb die Salmonellenzelle ab. Die freien Phagen schwärmten aus und enterten den zweiten Salmonella-Stamm, um sich dort weiter zu vermehren. Dabei übertrugen die Phagen ihre Gene in fast alle Zellen jenes Stammes, der bis dahin frei von Phagen-Genen war.

Dieser sogenannte horizontale Gen-Transfer war manchmal schon nach drei Tagen abgeschlossen. «Der Gen-Transfer ist extrem effizient. Das hat uns überrascht», sagt Hardt, der eine solch rasche Durchseuchung des bis dahin unbelasteten Salmonellenstamms nicht erwartet hat.

Virus ist mit Alarmsystem vernetzt

«Die Effizienz des Vorgangs lässt sich mit bisherigem Lehrbuchwissen erklären», sagt Mérédic Diard, Postdoktorand in Hardts Gruppe, der die Studie durchführte. Sobald die Bakterienzelle von Entzündungsfaktoren wie reaktiven Sauerstoff- oder Stickstoffradikalen angegriffen wird, setzt sie ein SOS-Signal ab, welches ein zelleigenes Reparaturprogramm startet. Dieses Signal wiederum ist für die im Erbgut schlummernden Phagen ein Weckruf. «Unsere Resultate zeigen, dass die Entzündung des Darms den horizontalen Gentransfer durch Phagen – ein wichtiger Evolutionsmechanismus von Mikroorganismen – fördert», erklärt Hardt.

Solange die Entzündung anhält, produzieren auch die frisch infizierten Salmonellen weitere Phagen, die wiederum weitere Salmonellen infizieren. Verhindern lässt sich diese Kettenreaktion, wenn das spezifische Immunsystem ins Geschehen eingreift. Es schickt spezifische Antikörper gegen die Salmonellen an den Ort der Infektion.

Durch eine Impfung kann man diese Gefahr einer Phagenfreisetzung verringern: In geimpften Tieren werden die Salmonellen daran gehindert eine Darmentzündung auszulösen. Die verhindert ganz nebenbei auch die SOS-Antwort und die Phagenproduktion.

Virus als Profiteur

Diard hält es für möglich, dass Phagen die Bakterien «steuern», damit diese noch effizienter eine Entzündung im Darm auslösen. Das fördert die Vermehrung des Virus‘ im Darm. Das mag auch ein Grund dafür sein, dass viele Phagen Gene zur Toxinbildung an die Bakterien weitergeben. Phagen-kodierte Giftstoffe könnten genau die Bedingungen im Darm von Opfern hervorrufen, welche die Phagen-Produktion anheizen. «Phagen sind „egoistisch“. Der durch Salmonellen verursachte Durchfall kann deshalb als Kollateralschaden der Phagenevolution betrachtet werden», sagt Hardt.

Wie das Cholera-Bakterium gefährlich wurde

Cholera ist eine weltweit verbreitete, gefürchtete Durchfallerkrankung, ausgelöst durch das Bakterium Vibrio cholerae. Das war nicht immer so. Der Vorfahre des Cholera-Erregers war ein harmloses Brackwasser-Bakterium vor der Küste Bangladeschs. Eine Phage infizierte jedoch dieses Bakterium und baute seine DNS in das Bakteriengenom ein, darunter ein Gen zur Bildung des Cholera-Toxins. Dadurch verwandelte sich das harmlose Bakterium in einen gefürchteten Krankheitserreger. Offenbar verschaffte das Toxin-Gen dem Bakterium einen evolutiven Vorteil. Heute ist der Cholera-Erreger rund um den Globus verbreitet und sorgt immer wieder – insbesondere nach Naturkatastrophen oder in Krisengebieten – für Epidemien, die viele Opfer fordern.

Literaturhinweis

Diard M et al. Inflammation boosts bacteriophage transfer between Salmonella spp. Science 17 Mar 2017: Vol. 355, Issue 6330, pp. 1211-1215. DOI: 10.1126/science.aaf8451

Media Contact

Peter Rüegg Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Informationen:

http://www.ethz.ch

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

KI-basierte Software in der Mammographie

Eine neue Software unterstützt Medizinerinnen und Mediziner, Brustkrebs im frühen Stadium zu entdecken. // Die KI-basierte Mammographie steht allen Patientinnen zur Verfügung und erhöht ihre Überlebenschance. Am Universitätsklinikum Carl Gustav…

Mit integriertem Licht zu den Computern der Zukunft

Während Computerchips Jahr für Jahr kleiner und schneller werden, bleibt bisher eine Herausforderung ungelöst: Das Zusammenbringen von Elektronik und Photonik auf einem einzigen Chip. Zwar gibt es Bauteile wie MikroLEDs…

Antibiotika: Gleicher Angriffspunkt – unterschiedliche Wirkung

Neue antimikrobielle Strategien sind dringend erforderlich, um Krankheitserreger einzudämmen. Das gilt insbesondere für Gram-negative Bakterien, die durch eine dicke zweite Membran vor dem Angriff von Antibiotika geschützt sind. Mikrobiologinnen und…

Partner & Förderer