Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Entzifferung eines geheimnisvollen Moleküls

02.03.2010
Kölner Wissenschaftler veröffentlichen in Nature Chemistry

In den meisten Molekülen sitzen die Atome an festen Plätzen. Ganz anders im protonierten Methan, CH5+, in dem die Wasserstoffatome sogar ihre Plätze wechseln.

Dem interdisziplinären Team von Experimentalphysikern der Universität zu Köln um Prof. Dr. Stephan Schlemmer, vom FOM Institut für Plasmaphysik in Rijnhuizen (NL) und theoretischen Chemikern der Ruhr-Universität Bochum um Prof. Dr. Domink Marx ist es nun gelungen, der Bewegung der Wasserstoffatome auf die Spur zu kommen.

Insbesondere interessierte die Frage, was mit der Bewegungsfreiheit dieses Chamaeleons geschieht, wenn man nach und nach die Wasserstoffatome durch schwerere Deuteriumatome ersetzt. Die Ergebnisse dieser Arbeit wurden gestern in der renommierten britischen Fachzeitschrift "Nature Chemistry" veröffentlicht.

Lieblingsplätze im Molekül
Trotz der rasend schnellen Bewegung der Wasserstoffatome im protonierten Methan (CH5+) sortieren sich die Wasserstoffatome bevorzugt in einer Zweiergruppe (H2) und einem Dreibein (CH3). Es tat sich eine "einfache" Frage auf: Gibt es wegen dieser Sortierung und trotz der Bewegung Lieblingsplätze für die Wasserstoffatome, wenn man einige Wasserstoffatome (H) durch ihre schweren Brüder Deuterium (D) ersetzt?
Die Kölner Experimente
Um diese Frage zu beantworten, haben die Forscher die H-Atome im CH5+ Molekül schrittweise durch D-Atome ersetzt und von den so entstandenen Molekülen Infrarotspektren aufgenommen. Dazu wurden die Moleküle in einem Ionenspeicher festgehalten, auf tiefe Temperaturen heruntergekühlt, und dann mit dem Infrarotlaser FOM-Instituts für Plasmaphysik beleuchtet. Die Kölner Spektren zeigen dramatische Unterschiede für die verschiedenen Moleküle. Mit den ausgefeilten Simulationen der Bochumer Chemiker konnten die Spektren richtig gedeutet werden, wenn der Quantennatur der Bewegung der H und D-Atome Rechnung getragen wurde. Bei dem Vergleich mit den experimentellen Spektren bestätigte sich schließlich, was die Forscher schon seit langem vermutet hatten: Die H und D Atome setzen sich tatsächlich bevorzugt an ihre Lieblingsplätze.
Neue Fragen
Das neue Wissen um das Verhalten der Wasserstoffatome ist für die Kölner Wissenschaftler und ihre Kollegen von generellem Interesse, da CH5+ als Prototyp für eine ganze Klasse von Molekülen gilt, bei denen die Atome ihre Plätze tauschen. Mit der Frage, ob die schnellen Bewegungen der Atome mit der Anlagerung weiterer Aggregate abnimmt, wollen sich die Forscher in Zukunft beschäftigen.
Bei Rückfragen:
Prof. Dr. Stephan Schlemmer
I. Physikalisches Institut
Universität zu Köln
Zülpicher Strasse 77
50937 Köln
Telefon 0221 470 5736
E-Mail: schlemmer@ph1.uni-koeln.de
Prof. Dr. Dominik Marx,
Lehrstuhl für Theoretische Chemie der Ruhr-Universität Bochum,
44780 Bochum,
Telefon 0234/32-28083
E-Mail: dominik.marx@rub.de
Verantwortlich:
Dr. Patrick Honecker

Gabriele Rutzen | idw
Weitere Informationen:
http://www.astro.uni-koeln.de/labastro
http://www.uni-koeln.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aufschlussreiche Partikeltrennungen
20.07.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Bildgebung von entstehendem Narbengewebe
20.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie