Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Entzifferung eines geheimnisvollen Moleküls

02.03.2010
Kölner Wissenschaftler veröffentlichen in Nature Chemistry

In den meisten Molekülen sitzen die Atome an festen Plätzen. Ganz anders im protonierten Methan, CH5+, in dem die Wasserstoffatome sogar ihre Plätze wechseln.

Dem interdisziplinären Team von Experimentalphysikern der Universität zu Köln um Prof. Dr. Stephan Schlemmer, vom FOM Institut für Plasmaphysik in Rijnhuizen (NL) und theoretischen Chemikern der Ruhr-Universität Bochum um Prof. Dr. Domink Marx ist es nun gelungen, der Bewegung der Wasserstoffatome auf die Spur zu kommen.

Insbesondere interessierte die Frage, was mit der Bewegungsfreiheit dieses Chamaeleons geschieht, wenn man nach und nach die Wasserstoffatome durch schwerere Deuteriumatome ersetzt. Die Ergebnisse dieser Arbeit wurden gestern in der renommierten britischen Fachzeitschrift "Nature Chemistry" veröffentlicht.

Lieblingsplätze im Molekül
Trotz der rasend schnellen Bewegung der Wasserstoffatome im protonierten Methan (CH5+) sortieren sich die Wasserstoffatome bevorzugt in einer Zweiergruppe (H2) und einem Dreibein (CH3). Es tat sich eine "einfache" Frage auf: Gibt es wegen dieser Sortierung und trotz der Bewegung Lieblingsplätze für die Wasserstoffatome, wenn man einige Wasserstoffatome (H) durch ihre schweren Brüder Deuterium (D) ersetzt?
Die Kölner Experimente
Um diese Frage zu beantworten, haben die Forscher die H-Atome im CH5+ Molekül schrittweise durch D-Atome ersetzt und von den so entstandenen Molekülen Infrarotspektren aufgenommen. Dazu wurden die Moleküle in einem Ionenspeicher festgehalten, auf tiefe Temperaturen heruntergekühlt, und dann mit dem Infrarotlaser FOM-Instituts für Plasmaphysik beleuchtet. Die Kölner Spektren zeigen dramatische Unterschiede für die verschiedenen Moleküle. Mit den ausgefeilten Simulationen der Bochumer Chemiker konnten die Spektren richtig gedeutet werden, wenn der Quantennatur der Bewegung der H und D-Atome Rechnung getragen wurde. Bei dem Vergleich mit den experimentellen Spektren bestätigte sich schließlich, was die Forscher schon seit langem vermutet hatten: Die H und D Atome setzen sich tatsächlich bevorzugt an ihre Lieblingsplätze.
Neue Fragen
Das neue Wissen um das Verhalten der Wasserstoffatome ist für die Kölner Wissenschaftler und ihre Kollegen von generellem Interesse, da CH5+ als Prototyp für eine ganze Klasse von Molekülen gilt, bei denen die Atome ihre Plätze tauschen. Mit der Frage, ob die schnellen Bewegungen der Atome mit der Anlagerung weiterer Aggregate abnimmt, wollen sich die Forscher in Zukunft beschäftigen.
Bei Rückfragen:
Prof. Dr. Stephan Schlemmer
I. Physikalisches Institut
Universität zu Köln
Zülpicher Strasse 77
50937 Köln
Telefon 0221 470 5736
E-Mail: schlemmer@ph1.uni-koeln.de
Prof. Dr. Dominik Marx,
Lehrstuhl für Theoretische Chemie der Ruhr-Universität Bochum,
44780 Bochum,
Telefon 0234/32-28083
E-Mail: dominik.marx@rub.de
Verantwortlich:
Dr. Patrick Honecker

Gabriele Rutzen | idw
Weitere Informationen:
http://www.astro.uni-koeln.de/labastro
http://www.uni-koeln.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie