Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entwicklungssprünge auf dem Weg zur Pflanze

10.07.2017

Deutsch-israelisches Forschungsteam unter Leitung der Uni Kiel entdeckt evolutionären Ursprung der pflanzlichen Redox-Regulation

In der Entwicklung des höheren Lebens im Verlaufe vieler Millionen Jahre hat es immer wieder bedeutende und vergleichsweise plötzliche Entwicklungssprünge gegeben. In ihrer Folge erwarben Lebewesen neue Eigenschaften und eroberten zusätzliche Lebensräume. Dabei eigneten sie sich diese Fähigkeiten zum Teil aus ihren Vorläufer-Organismen an: Die Plastiden der Pflanzen, der Ort an dem Photosynthese stattfindet, waren beispielsweise ursprünglich eigenständige, einzellige Lebewesen.


Zellen der Kieselalge Phaeodactylum tricornutum mit markierten Zellorganellen: Der Zellkern ist grün und die Chloroplasten sind rot hervorgehoben.

Abbildung: Shiri Graff van Creveld, The Weizmann Institute

Die entwicklungsgeschichtliche Verwandlung von Cyanobakterien in solche Zellorganellen, die Endosymbiose, ermöglichte der Pflanzenzelle die Fähigkeit zur Photosynthese und damit zur Gewinnung von Energie aus Sonnenlicht. Offenbar auf vergleichbarem Weg ist eine ähnlich wichtige, damit zusammenhängende Eigenschaft der Pflanzen und anderer höherer Lebewesen entstanden:

Ein internationales Forschungsteam vom Institut für Allgemeine Mikrobiologie an der Christian-Albrechts-Universität zu Kiel (CAU) und vom israelischen Weizmann Institute of Science fand Hinweise, dass die Redox-Regulation im pflanzlichen Stoffwechsel ihren Ursprung in zwei aufeinanderfolgenden Plastiden-Endosymbiose-Ereignissen hatte. Die Ergebnisse der vom Kieler Exzellenzcluster „Ozean der Zukunft“ geförderten Arbeit veröffentlichte das internationale Forschungsteam kürzlich in der renommierten Fachzeitschrift Nature Plants.

Die Entwicklung der Plastide ist von grundlegender Bedeutung in der Evolution der Pflanzen. Global betrachtet brachten sie die sogenannte Primärproduktion in Schwung, lieferten also Sauerstoff und Nahrungsgrundlage für alles Leben auf der Erde. Für den neu erlangten Vorteil der Energiegewinnung durch Photosynthese zahlte die Zelle gewissermaßen einen evolutionären Preis. Sie musste auf die Bildung hochreaktiver und potenziell schädlicher Nebenprodukte reagieren, der sogenannten Radikale.

Als Antwort darauf entwickelte die Zelle die Fähigkeit, freie Radikale aufzuspüren und diese Information zu nutzen, um ihre Stoffwechselaktivitäten über einen einzigartigen regulatorischen Mechanismus, die Redox-Regulation, zu kontrollieren. Da gerade Sauerstoff dazu neigt, diese problematischen Moleküle zu formen, gewann die Redox-Regulation mit der erhöhten Verfügbarkeit von Sauerstoff in der Erdvergangenheit an Bedeutung - einem Zeitraum, der mit dem fundamentalen Entwicklungssprung hin zum vielzelligen Leben verbunden wird.

Um den evolutionären Ursprung der Redox-Regulation zu ergründen, verglich Dr. Christian Wöhle, wissenschaftlicher Mitarbeiter in der Arbeitsgruppe Genomische Mikrobiologie der CAU, das Netzwerk Redox-regulierter Proteine der Kieselalge Phaeodactylum tricornutum mit Lebewesen verschiedener anderer Stämme. Als entwicklungsgeschichtlich sehr einfache Lebensform trägt die Kieselalge bereits Züge höher entwickelter Organismen; ebenso wie Pflanzen ist sie zum Beispiel in der Lage, Photosynthese zu betreiben. So lässt dieser Modellorganismus Rückschlüsse auf höher entwickelte, pflanzliche und tierische Lebensformen zu.

Gemeinsam mit ihren internationalen Kolleginnen und Kollegen erkannten die Kieler Forschenden, dass die Entwicklung der Redox-Regulation höherer Lebewesen zeitlich mit dem Ablauf einer mehrstufigen Plastiden-Endosymbiose zusammenfiel. Der Vergleich mit den Proteinsequenzen verschiedener Vorgängerorganismen zeigte, dass es bei den Vorfahren der Kieselalgen zeitgleich mit der Aufnahme der ersten Plastide plötzlich zu einem vermehrten Vorkommen von Redox-regulierten Proteinen kam.

Diese Proteine verändern ihre biochemischen Eigenschaften, wenn sie mit Radikalen in Kontakt kommen. So erlauben sie dem Organismus, seinen Stoffwechsel auf veränderliche Umweltbedingungen einzustellen. „Wir konnten beobachten, dass sich in der Entwicklung komplexerer pflanzlicher Organismen die für den Stoffwechsel verantwortlichen Proteine immer dann stark veränderten, wenn Zellorganellen hinzukamen“, betont Wöhle, Erstautor der Studie.

Der Mechanismus, mit dem die Kieselalgen die Fähigkeit zur Redox-Regulation erwarben, besteht in einem Übergang der genetischen Informationen aus den nacheinander erworbenen Plastiden in das Genom des aufnehmenden Organismus. Die Wissenschaftlerinnen und Wissenschaftler stellten fest, dass mehr als die Hälfte der an der Redox-Regulation beteiligten Gene aus einzelligen Organismen, in diesem Fall Cyanobakterien, stammen. Diese Beobachtung untermauert die Theorie des Forschungsteams, dass die Fähigkeit zur Redox-Regulation der Zelle auf dem Wege des endosymbiotischen Gentransfers zustande gekommen ist und damit den Grundstein zur Entwicklung höherer Pflanzen legte.

„Unsere Ergebnisse erlauben einen Einblick in die evolutionäre Anpassung des Lebens an die photosynthetische Energiegewinnung und die damit notwendig gewordenen erweiterten Regulationsmechanismen der Pflanzenzelle. Sie helfen uns dabei, die Reaktion verschiedener Organismen an eine langfristige Veränderung ihrer Lebensbedingungen besser zu verstehen“, fasst Co-Autorin Professorin Tal Dagan, Leiterin der Arbeitsgruppe Genomische Mikrobiologie an der CAU und Mitglied im „Kiel Evolution Center“ (KEC), zusammen.

Originalarbeit:
Christian Wöhle, Tal Dagan, Giddy Landan, Assaf Vardi & Shilo Rosenwasser “Expansion of the redox-sensitive proteome coincides with the plastid endosymbiosis” Nature Plants, Published on May 15, 2017, https://www.nature.com/articles/nplants201766

Bilder stehen zum Download bereit:
http://www.uni-kiel.de/download/pm/2017/2017-225-1.jpg
Bildunterschrift: Zellen der Kieselalge Phaeodactylum tricornutum mit markierten Zellorganellen: Der Zellkern ist grün und die Chloroplasten sind rot hervorgehoben.
Abbildung: Shiri Graff van Creveld, The Weizmann Institute of Science

Kontakt:
Prof. Tal Dagan
Genomische Mikrobiologie,
Institut für Allgemeine Mikrobiologie, CAU
Telefon: 0431 880-5712
E-Mail: tdagan@ifam.uni-kiel.de

Dr. Christian Wöhle
Genomische Mikrobiologie,
Institut für Allgemeine Mikrobiologie, CAU
Telefon: 0431 880-5744
E-Mail: cwoehle@ifam.uni-kiel.de

Weitere Informationen:
Genomische Mikrobiologie (AG Dagan),
Institut für Allgemeine Mikrobiologie, CAU
http://www.mikrobio.uni-kiel.de/de/ag-dagan

Exzellenzcluster “Ozean der Zukunft”, CAU Kiel:
http://www.futureocean.org

Forschungszentrum „Kiel Evolution Center“, CAU Kiel:
http://www.kec.uni-kiel.de

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Hochleistungs-Mais sind mehr Gene aktiv
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Warum es für Pflanzen gut sein kann auf Sex zu verzichten
19.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie