Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entwicklungssprünge auf dem Weg zur Pflanze

10.07.2017

Deutsch-israelisches Forschungsteam unter Leitung der Uni Kiel entdeckt evolutionären Ursprung der pflanzlichen Redox-Regulation

In der Entwicklung des höheren Lebens im Verlaufe vieler Millionen Jahre hat es immer wieder bedeutende und vergleichsweise plötzliche Entwicklungssprünge gegeben. In ihrer Folge erwarben Lebewesen neue Eigenschaften und eroberten zusätzliche Lebensräume. Dabei eigneten sie sich diese Fähigkeiten zum Teil aus ihren Vorläufer-Organismen an: Die Plastiden der Pflanzen, der Ort an dem Photosynthese stattfindet, waren beispielsweise ursprünglich eigenständige, einzellige Lebewesen.


Zellen der Kieselalge Phaeodactylum tricornutum mit markierten Zellorganellen: Der Zellkern ist grün und die Chloroplasten sind rot hervorgehoben.

Abbildung: Shiri Graff van Creveld, The Weizmann Institute

Die entwicklungsgeschichtliche Verwandlung von Cyanobakterien in solche Zellorganellen, die Endosymbiose, ermöglichte der Pflanzenzelle die Fähigkeit zur Photosynthese und damit zur Gewinnung von Energie aus Sonnenlicht. Offenbar auf vergleichbarem Weg ist eine ähnlich wichtige, damit zusammenhängende Eigenschaft der Pflanzen und anderer höherer Lebewesen entstanden:

Ein internationales Forschungsteam vom Institut für Allgemeine Mikrobiologie an der Christian-Albrechts-Universität zu Kiel (CAU) und vom israelischen Weizmann Institute of Science fand Hinweise, dass die Redox-Regulation im pflanzlichen Stoffwechsel ihren Ursprung in zwei aufeinanderfolgenden Plastiden-Endosymbiose-Ereignissen hatte. Die Ergebnisse der vom Kieler Exzellenzcluster „Ozean der Zukunft“ geförderten Arbeit veröffentlichte das internationale Forschungsteam kürzlich in der renommierten Fachzeitschrift Nature Plants.

Die Entwicklung der Plastide ist von grundlegender Bedeutung in der Evolution der Pflanzen. Global betrachtet brachten sie die sogenannte Primärproduktion in Schwung, lieferten also Sauerstoff und Nahrungsgrundlage für alles Leben auf der Erde. Für den neu erlangten Vorteil der Energiegewinnung durch Photosynthese zahlte die Zelle gewissermaßen einen evolutionären Preis. Sie musste auf die Bildung hochreaktiver und potenziell schädlicher Nebenprodukte reagieren, der sogenannten Radikale.

Als Antwort darauf entwickelte die Zelle die Fähigkeit, freie Radikale aufzuspüren und diese Information zu nutzen, um ihre Stoffwechselaktivitäten über einen einzigartigen regulatorischen Mechanismus, die Redox-Regulation, zu kontrollieren. Da gerade Sauerstoff dazu neigt, diese problematischen Moleküle zu formen, gewann die Redox-Regulation mit der erhöhten Verfügbarkeit von Sauerstoff in der Erdvergangenheit an Bedeutung - einem Zeitraum, der mit dem fundamentalen Entwicklungssprung hin zum vielzelligen Leben verbunden wird.

Um den evolutionären Ursprung der Redox-Regulation zu ergründen, verglich Dr. Christian Wöhle, wissenschaftlicher Mitarbeiter in der Arbeitsgruppe Genomische Mikrobiologie der CAU, das Netzwerk Redox-regulierter Proteine der Kieselalge Phaeodactylum tricornutum mit Lebewesen verschiedener anderer Stämme. Als entwicklungsgeschichtlich sehr einfache Lebensform trägt die Kieselalge bereits Züge höher entwickelter Organismen; ebenso wie Pflanzen ist sie zum Beispiel in der Lage, Photosynthese zu betreiben. So lässt dieser Modellorganismus Rückschlüsse auf höher entwickelte, pflanzliche und tierische Lebensformen zu.

Gemeinsam mit ihren internationalen Kolleginnen und Kollegen erkannten die Kieler Forschenden, dass die Entwicklung der Redox-Regulation höherer Lebewesen zeitlich mit dem Ablauf einer mehrstufigen Plastiden-Endosymbiose zusammenfiel. Der Vergleich mit den Proteinsequenzen verschiedener Vorgängerorganismen zeigte, dass es bei den Vorfahren der Kieselalgen zeitgleich mit der Aufnahme der ersten Plastide plötzlich zu einem vermehrten Vorkommen von Redox-regulierten Proteinen kam.

Diese Proteine verändern ihre biochemischen Eigenschaften, wenn sie mit Radikalen in Kontakt kommen. So erlauben sie dem Organismus, seinen Stoffwechsel auf veränderliche Umweltbedingungen einzustellen. „Wir konnten beobachten, dass sich in der Entwicklung komplexerer pflanzlicher Organismen die für den Stoffwechsel verantwortlichen Proteine immer dann stark veränderten, wenn Zellorganellen hinzukamen“, betont Wöhle, Erstautor der Studie.

Der Mechanismus, mit dem die Kieselalgen die Fähigkeit zur Redox-Regulation erwarben, besteht in einem Übergang der genetischen Informationen aus den nacheinander erworbenen Plastiden in das Genom des aufnehmenden Organismus. Die Wissenschaftlerinnen und Wissenschaftler stellten fest, dass mehr als die Hälfte der an der Redox-Regulation beteiligten Gene aus einzelligen Organismen, in diesem Fall Cyanobakterien, stammen. Diese Beobachtung untermauert die Theorie des Forschungsteams, dass die Fähigkeit zur Redox-Regulation der Zelle auf dem Wege des endosymbiotischen Gentransfers zustande gekommen ist und damit den Grundstein zur Entwicklung höherer Pflanzen legte.

„Unsere Ergebnisse erlauben einen Einblick in die evolutionäre Anpassung des Lebens an die photosynthetische Energiegewinnung und die damit notwendig gewordenen erweiterten Regulationsmechanismen der Pflanzenzelle. Sie helfen uns dabei, die Reaktion verschiedener Organismen an eine langfristige Veränderung ihrer Lebensbedingungen besser zu verstehen“, fasst Co-Autorin Professorin Tal Dagan, Leiterin der Arbeitsgruppe Genomische Mikrobiologie an der CAU und Mitglied im „Kiel Evolution Center“ (KEC), zusammen.

Originalarbeit:
Christian Wöhle, Tal Dagan, Giddy Landan, Assaf Vardi & Shilo Rosenwasser “Expansion of the redox-sensitive proteome coincides with the plastid endosymbiosis” Nature Plants, Published on May 15, 2017, https://www.nature.com/articles/nplants201766

Bilder stehen zum Download bereit:
http://www.uni-kiel.de/download/pm/2017/2017-225-1.jpg
Bildunterschrift: Zellen der Kieselalge Phaeodactylum tricornutum mit markierten Zellorganellen: Der Zellkern ist grün und die Chloroplasten sind rot hervorgehoben.
Abbildung: Shiri Graff van Creveld, The Weizmann Institute of Science

Kontakt:
Prof. Tal Dagan
Genomische Mikrobiologie,
Institut für Allgemeine Mikrobiologie, CAU
Telefon: 0431 880-5712
E-Mail: tdagan@ifam.uni-kiel.de

Dr. Christian Wöhle
Genomische Mikrobiologie,
Institut für Allgemeine Mikrobiologie, CAU
Telefon: 0431 880-5744
E-Mail: cwoehle@ifam.uni-kiel.de

Weitere Informationen:
Genomische Mikrobiologie (AG Dagan),
Institut für Allgemeine Mikrobiologie, CAU
http://www.mikrobio.uni-kiel.de/de/ag-dagan

Exzellenzcluster “Ozean der Zukunft”, CAU Kiel:
http://www.futureocean.org

Forschungszentrum „Kiel Evolution Center“, CAU Kiel:
http://www.kec.uni-kiel.de

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik