Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entwicklung adulter Stammzellen im Frühstadium erforscht

26.03.2010
Aus adulten menschlichen Stammzellen können sich verschiedene Gewebezellen entwickeln. Welcher Zelltyp sich herausbildet, hängt unter anderem mit den mechanischen Eigenschaften der Zellumgebung zusammen. Der Göttinger Biophysiker Dr. Florian Rehfeldt hat mittels Fluoreszensmikroskopie das frühe Stadium dieser Differenzierung untersucht. Bereits nach 24 Stunden konnte er erkennen, wie sich die Form und innere Struktur von Stammzellen aus dem Knochenmark in Richtung Muskelzellen verändern. Damit ist nachgewiesen, dass sich bereits nach sehr kurzer Zeit signifikante Unterschiede durch das komplexe mechanische Zusammenspiel zwischen Zelle und Umgebung herausbilden.
Entwicklung adulter Stammzellen im Frühstadium erforscht
Göttinger Biophysiker untersucht Ordnung und Struktur des Zellgerüsts
(pug) Aus adulten menschlichen Stammzellen können sich verschiedene Gewebezellen entwickeln. Welcher Zelltyp sich herausbildet, hängt unter anderem mit den mechanischen Eigenschaften der Zellumgebung zusammen: Auf weichen Oberflächen entwickeln sich nach einigen Tagen Nervenzellen, auf mittelharten Muskelzellen und auf harten Oberflächen entstehen Knochenzellen. Der Göttinger Biophysiker Dr. Florian Rehfeldt hat mittels Fluoreszensmikroskopie das frühe Stadium dieser Differenzierung untersucht. Bereits nach 24 Stunden konnte er erkennen, wie sich die Form und innere Struktur von Stammzellen aus dem Knochenmark in Richtung Muskelzellen verändern. Damit konnte Dr. Rehfeldt nachweisen, dass sich bereits nach sehr kurzer Zeit signifikante Unterschiede durch das komplexe mechanische Zusammenspiel zwischen Zelle und Umgebung herausbilden. Bei seiner Forschung hat er mit Kollegen aus Israel und den USA kooperiert. Die Wissenschaftler entwickelten und erprobten ein physikalisch theoretisches Modell, welches das komplexe System von Zelle und Umgebung mit einfachen Prinzipien der klassischen Mechanik erklärt. Ihre Forschungsergebnisse haben sie in der Online-Ausgabe der Fachzeitschrift "Nature Physics" veröffentlicht.

"In der Medizin kann es in Zukunft von Nutzen sein, Stammzellen aus dem Knochenmark zu therapeutischen Zwecken einzusetzen. Dafür ist es wichtig zu verstehen, wie das komplexe mechanische Zusammenspiel zwischen Zelle und Umgebung abläuft", so Dr. Rehfeldt. "Deshalb haben wir in unseren Experimenten sehr genau die Ordnung und Struktur des Zytoskeletts von Stammzellen in Abhängigkeit von der Zellumgebung untersucht." Das Zytoskelett ist das mechanische Gerüst, mit dessen Hilfe Zellen Kräfte aufbauen und an die Umgebung übertragen. Dieses Netzwerk im Inneren der Zelle besteht unter anderem aus Akto-Myosin-Stressfasern, die wie Taue kreuz und quer gespannt sind.

Dr. Rehfeldt hat in seinen Experimenten Stammzellen auf unterschiedlich harten Oberflächen wachsen lassen und mit Hilfe elektronischer Bildverarbeitung analysiert, wie sich diese Stressfasern ausrichten. "Die Zellen sind zunächst alle rund. Auf einer Oberfläche mittlerer Elastizität strecken sie sich in die Länge, indem sich die Stressfasern entlang der Hauptrichtung der Zelle ausrichten. Das ist ganz typisch für Muskelzellen", erläutert der Göttinger Biophysiker. "Mit diesem Verfahren haben wir bereits 24 Stunden nach dem Auftragen der Stammzelle auf die Oberfläche starke Indizien für die Entwicklung in Richtung Muskelzelle. Biochemische Analysen können dies erst nach mehreren Tagen nachweisen."

Für die Erklärung des komplizierten Systems haben Dr. Assaf Zemel von der Hebrew University in Jerusalem und Prof. Dr. Samuel Safran vom israelischen Weizman Institute of Science ein physikalisch theoretisches Modell entwickelt. "Obwohl dieses Rechenmodell auf einfachen mechanischen Annahmen beruht, kann es doch erstaunlich genau das komplexe Zusammenspiel von Zelle und Umgebung beschreiben. So können wir grundlegende Fragen der Biophysik von Zellen besser verstehen", so Dr. Rehfeldt. Das Modell soll nun verfeinert werden, um auch das Verhalten anderer Zelltypen erklären zu können.

Dr. Florian Rehfeldt hat die Untersuchungen an der amerikanischen University of Pennsylvania begonnen, an der er als Postdoktorand im Rahmen eines Feodor-Lynen Stipendiums der Alexander von Humboldt-Stiftung forschte. Seine experimentelle Forschung für die Studie setzte er an der Universität Göttingen fort. Hier leitet er seit Oktober 2008 eine Nachwuchsgruppe zur Erforschung der Mechanik von Zellen und Zellumgebungen am Dritten Physikalischen Institut.

Originalveröffentlichung:
A. Zemel, F. Rehfeldt et al.: Optimal matrix rigidity for stress-fibre polarization in stem cells, Nature Physics (21 March 2010), DOI 10.1038/nphys1613
Kontaktadresse:
Dr. Florian Rehfeldt
Georg-August-Universität Göttingen
Fakultät für Physik - Drittes Physikalisches Institut
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon (0551) 39-13831, Fax (0551) 39-7720
E-Mail: rehfeldt@physik3.gwdg.de

Dr. Bernd Ebeling | idw
Weitere Informationen:
http://www.dpi.physik.uni-goettingen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften