Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Entstehung der Baumwollfasern

16.01.2013
Seit mehreren Jahrtausenden nutzt der Mensch Baumwolle, um Kleidung und Stoffe herzustellen. Aber wie entstand diese wichtige Naturfaser im Verlauf der Evolution?
Vor rund 60 Millionen Jahren vervielfältigten sich die Chromosomensätze der Baumwolle fünf- bis sechsfach. Dadurch erhöhte sich die genetische Vielfalt und die Bildung der Baumwollfaser, eine evolutionäre Innovation, wurde ermöglicht.

Baumwolle (Gossypium spec.) wird vom Mensch als Ölpflanze, hauptsächlich aber zur Gewinnung von Naturfasern angebaut. Die Baumwollfaser wird aus den Samenhaaren (sogenannte Trichome) gewonnen, die die Samen als Verlängerung der Epidermis ausbilden. Die Fasern werden meist zu Fäden gesponnen und für die Produktion von Textilien verwendet. Daher hängt die Qualität der Fasern vor allem von ihrer Länge ab.

Jedoch nicht jede Baumwollart besitzt lange Samenhaare, die zu Garn weiterverarbeitet werden können.

Die Evolution der Baumwollfaser
Ein internationales Forscherteam, darunter auch deutsche Forscher vom Institute of Bioinformatics and Systems Biology (IBIS), rekonstruierte die genetische Entwicklung der Baumwolle, um die Evolution der für uns bedeutenden Naturfaser nachzuzeichnen.

Die Entstehung von qualitativ hochwertigen, spinnbaren Baumwollfasern ist mit einem Phänomen verknüpft, dass Polyploidie genannt wird. Polyploide Pflanzen besitzen mehr als zwei Chromosomensätze in ihren Zellen. Diese können durch die Vervielfachung der bestehenden diploiden (zweifachen) Chromosomensätze oder durch die Fusion unterschiedlicher, verwandter Genome - wie z.B. beim Weizen - entstehen.

Der lange Weg zur spinnbaren Baumwollfaser
Vor mindestens 60 Millionen Jahren entwickelte sich die Baumwolle aus einem Vorfahren, den sie mit Kakao (Theobroma cacao) gemeinsam hat. Kurz danach kam es zu einer abrupten fünf-bis sechsfachen Vervielfältigung der Chromosomensätze. Das von den Forschern betrachtete Genom der wilden Baumwollart Gossypium raimondii besitzt dabei 13 Chromosomen. Die Vergrößerung des Erbguts im Vergleich zum Kakao wird an einem Beispiel deutlich: Auf fünf Chromosomen konnten Erbinformationen gefunden werden, die beim Kakao auf nur einem einzigen Chromosom liegt.

Die Samen bilden lange, helle Haare aus, die z.B. zu Kleidung weiterverarbeitet werden können. (Quelle: © Begonia / Wikimedia.org)

Kakao (Theobroma cacao) und Baumwolle entwickelten sich aus einem gemeinsamen Vorfahren. (Quelle: © iStockphoto®)

Auf unterschiedlichen Kontinenten entstanden parallel wilde Vorfahren unserer heutigen Kulturbaumwolle. Wilde Baumwolle (mit dem sogenannten Genom D), die in Mittelamerika heimisch war, hatte allerdings kurze, nicht spinnbare Samenhaare. Auf dem afrikanischen Kontinent entwickelten sich im Laufe der Zeit allerdings zwei weitere, spezifische Genome - das F und aus diesem wiederum das A-Genom. Pflanzen mit dem Genom A besaßen bereits etwas längere und damit prinzipiell spinnbare Samenhaare.

Fusion vergrößert das genetische Repertoire
Vor circa ein bis zwei Millionen Jahren verschmolzen die Baumwollgenome A und D schließlich miteinander. Dadurch gewann das Erbgut der Pflanze an Komplexität und bildete die Grundlage für neue Merkmale. Durch diese Fusion zweier Genome entwickelten sich letztlich auch die wesentlich längeren Samenhaare, die später vom Menschen entdeckt und als Naturfasern weiterverarbeitet wurden. Aufgrund dieses neuen Phänotyps wurde die Baumwolle vom Menschen kultiviert und zu einer der bedeutsamsten Nutzpflanzen, die heute nicht mehr aus unserem Alltag wegzudenken ist. Mittlerweile gibt es moderne Hochleistungssorten mit verbesserter Produktivität und Faserlänge.

Das Genom ist komplex

Die wirtschaftlich bedeutendsten Baumwollarten Gossypium hirsutum und Gossypium barbadense entwickelten sich so die Meinung der Forscher, unabhängig voneinander Gemeinsam ist ihnen ein tetraploides Genom, d.h. sie besitzen statt einem doppelten einen vierfachen Chromosomensatz. Sie entstanden also durch die Kreuzung zweier unterschiedlicher, diploider Wild-Baumwollarten. Dieses Phänomen bezeichnen Biologen allgemein als Allopolyploidie.

Vergleich durch DNA-Sequenzierung
Die Wissenschaftler verglichen für ihre Forschung das Erbgut mehrerer Baumwollarten. Gossypium raimondii galt den Forschern hierbei als Referenzgenom, welches sequenziert und mit DNA-Abschnitten (Re-Sequenzierung) anderer Arten verglichen wurde.

Bei diesen vergleichenden Genomanalysen betrachteten die Wissenschaftler die Art Gossypium herbaceum (Genom A), deren Samenhaare lang und spinnbar sind und der Art Gossypium longicalyx (Genom F), deren Fasern nicht-spinnbar sind, mit der ebenfalls nicht-spinnbaren Art Gossypium raimondii (Genom D). Diese drei diploiden Arten wurden daraufhin mit der evolutionär später entstandenen und heute häufig angebauten Art Gossypium hirsutum verglichen. Diese tetraploide Kulturpflanzenart entstand durch Allopolyploidie aus den zwei A und D Genomen.

Bessere Fasern durch die Duplikation der Chromosomensätze

Evolutionär jüngere Baumwollarten, wie beispielsweise die hier betrachtete Gossypium hirsutum, haben durch die Vervielfältigung der Chromosomensätze und die Fusion unterschiedlicher Genome die 30-36-fache Anzahl an Genen ihrer wilden Vorfahren. So entstanden durch die Vergrößerung des Erbguts beispielsweise Gene, welche die Widerstandsfähigkeit der Pflanzen verbesserten (Schädlings- und Krankheitsresistenz).

Man vermutet daher, dass Polyploidie ein Mechanismus ist, der Pflanzen, die stärker als andere Lebewesen an einen Standort gebunden sind, hilft sich besser an wechselnde Umweltbedingungen anzupassen. Die Spannbreite der möglichen Reaktionsmuster wird durch die Erhöhung der genetischen Vielfalt erweitert. Die Vervielfältigung der Chromosomensätze führt deshalb oft zu neuen, unvorhersehbaren Eigenschaften, wie z. B. einer höheren Produktivität und im Fall der Baumwolle zu einer veränderten Faserqualität. Polyploide Pflanzen sind somit nicht nur die Summe ihrer Vorläufer, sondern können ganz neue Merkmale hervorbringen.

Die phylogenetischen Erkenntnisse und genetischen Sequenzdaten dieser Forschungsarbeit können helfen weitere Forschung voranzutreiben und die Züchtung von neuen Sorten zu erleichtern.

Quelle:
Paterson, A. H. et al. (2012): Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. In: Nature 492, 423–427, 20. Dezember 2012, doi: 10.1038/nature11798.

Paterson, A. H. et al. | Pflanzenforschung.de
Weitere Informationen:
http://www.pflanzenforschung.de/journal/aktuelles/die-entstehung-der-baumwollfasern?page=0,0&piwik_campaign=newsletter

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen
22.06.2017 | Heinrich-Heine-Universität Düsseldorf

nachricht Im Mikrokosmos wird es bunt: 124 Farben dank RGB-Technologie
22.06.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie