Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Entstehung der Baumwollfasern

16.01.2013
Seit mehreren Jahrtausenden nutzt der Mensch Baumwolle, um Kleidung und Stoffe herzustellen. Aber wie entstand diese wichtige Naturfaser im Verlauf der Evolution?
Vor rund 60 Millionen Jahren vervielfältigten sich die Chromosomensätze der Baumwolle fünf- bis sechsfach. Dadurch erhöhte sich die genetische Vielfalt und die Bildung der Baumwollfaser, eine evolutionäre Innovation, wurde ermöglicht.

Baumwolle (Gossypium spec.) wird vom Mensch als Ölpflanze, hauptsächlich aber zur Gewinnung von Naturfasern angebaut. Die Baumwollfaser wird aus den Samenhaaren (sogenannte Trichome) gewonnen, die die Samen als Verlängerung der Epidermis ausbilden. Die Fasern werden meist zu Fäden gesponnen und für die Produktion von Textilien verwendet. Daher hängt die Qualität der Fasern vor allem von ihrer Länge ab.

Jedoch nicht jede Baumwollart besitzt lange Samenhaare, die zu Garn weiterverarbeitet werden können.

Die Evolution der Baumwollfaser
Ein internationales Forscherteam, darunter auch deutsche Forscher vom Institute of Bioinformatics and Systems Biology (IBIS), rekonstruierte die genetische Entwicklung der Baumwolle, um die Evolution der für uns bedeutenden Naturfaser nachzuzeichnen.

Die Entstehung von qualitativ hochwertigen, spinnbaren Baumwollfasern ist mit einem Phänomen verknüpft, dass Polyploidie genannt wird. Polyploide Pflanzen besitzen mehr als zwei Chromosomensätze in ihren Zellen. Diese können durch die Vervielfachung der bestehenden diploiden (zweifachen) Chromosomensätze oder durch die Fusion unterschiedlicher, verwandter Genome - wie z.B. beim Weizen - entstehen.

Der lange Weg zur spinnbaren Baumwollfaser
Vor mindestens 60 Millionen Jahren entwickelte sich die Baumwolle aus einem Vorfahren, den sie mit Kakao (Theobroma cacao) gemeinsam hat. Kurz danach kam es zu einer abrupten fünf-bis sechsfachen Vervielfältigung der Chromosomensätze. Das von den Forschern betrachtete Genom der wilden Baumwollart Gossypium raimondii besitzt dabei 13 Chromosomen. Die Vergrößerung des Erbguts im Vergleich zum Kakao wird an einem Beispiel deutlich: Auf fünf Chromosomen konnten Erbinformationen gefunden werden, die beim Kakao auf nur einem einzigen Chromosom liegt.

Die Samen bilden lange, helle Haare aus, die z.B. zu Kleidung weiterverarbeitet werden können. (Quelle: © Begonia / Wikimedia.org)

Kakao (Theobroma cacao) und Baumwolle entwickelten sich aus einem gemeinsamen Vorfahren. (Quelle: © iStockphoto®)

Auf unterschiedlichen Kontinenten entstanden parallel wilde Vorfahren unserer heutigen Kulturbaumwolle. Wilde Baumwolle (mit dem sogenannten Genom D), die in Mittelamerika heimisch war, hatte allerdings kurze, nicht spinnbare Samenhaare. Auf dem afrikanischen Kontinent entwickelten sich im Laufe der Zeit allerdings zwei weitere, spezifische Genome - das F und aus diesem wiederum das A-Genom. Pflanzen mit dem Genom A besaßen bereits etwas längere und damit prinzipiell spinnbare Samenhaare.

Fusion vergrößert das genetische Repertoire
Vor circa ein bis zwei Millionen Jahren verschmolzen die Baumwollgenome A und D schließlich miteinander. Dadurch gewann das Erbgut der Pflanze an Komplexität und bildete die Grundlage für neue Merkmale. Durch diese Fusion zweier Genome entwickelten sich letztlich auch die wesentlich längeren Samenhaare, die später vom Menschen entdeckt und als Naturfasern weiterverarbeitet wurden. Aufgrund dieses neuen Phänotyps wurde die Baumwolle vom Menschen kultiviert und zu einer der bedeutsamsten Nutzpflanzen, die heute nicht mehr aus unserem Alltag wegzudenken ist. Mittlerweile gibt es moderne Hochleistungssorten mit verbesserter Produktivität und Faserlänge.

Das Genom ist komplex

Die wirtschaftlich bedeutendsten Baumwollarten Gossypium hirsutum und Gossypium barbadense entwickelten sich so die Meinung der Forscher, unabhängig voneinander Gemeinsam ist ihnen ein tetraploides Genom, d.h. sie besitzen statt einem doppelten einen vierfachen Chromosomensatz. Sie entstanden also durch die Kreuzung zweier unterschiedlicher, diploider Wild-Baumwollarten. Dieses Phänomen bezeichnen Biologen allgemein als Allopolyploidie.

Vergleich durch DNA-Sequenzierung
Die Wissenschaftler verglichen für ihre Forschung das Erbgut mehrerer Baumwollarten. Gossypium raimondii galt den Forschern hierbei als Referenzgenom, welches sequenziert und mit DNA-Abschnitten (Re-Sequenzierung) anderer Arten verglichen wurde.

Bei diesen vergleichenden Genomanalysen betrachteten die Wissenschaftler die Art Gossypium herbaceum (Genom A), deren Samenhaare lang und spinnbar sind und der Art Gossypium longicalyx (Genom F), deren Fasern nicht-spinnbar sind, mit der ebenfalls nicht-spinnbaren Art Gossypium raimondii (Genom D). Diese drei diploiden Arten wurden daraufhin mit der evolutionär später entstandenen und heute häufig angebauten Art Gossypium hirsutum verglichen. Diese tetraploide Kulturpflanzenart entstand durch Allopolyploidie aus den zwei A und D Genomen.

Bessere Fasern durch die Duplikation der Chromosomensätze

Evolutionär jüngere Baumwollarten, wie beispielsweise die hier betrachtete Gossypium hirsutum, haben durch die Vervielfältigung der Chromosomensätze und die Fusion unterschiedlicher Genome die 30-36-fache Anzahl an Genen ihrer wilden Vorfahren. So entstanden durch die Vergrößerung des Erbguts beispielsweise Gene, welche die Widerstandsfähigkeit der Pflanzen verbesserten (Schädlings- und Krankheitsresistenz).

Man vermutet daher, dass Polyploidie ein Mechanismus ist, der Pflanzen, die stärker als andere Lebewesen an einen Standort gebunden sind, hilft sich besser an wechselnde Umweltbedingungen anzupassen. Die Spannbreite der möglichen Reaktionsmuster wird durch die Erhöhung der genetischen Vielfalt erweitert. Die Vervielfältigung der Chromosomensätze führt deshalb oft zu neuen, unvorhersehbaren Eigenschaften, wie z. B. einer höheren Produktivität und im Fall der Baumwolle zu einer veränderten Faserqualität. Polyploide Pflanzen sind somit nicht nur die Summe ihrer Vorläufer, sondern können ganz neue Merkmale hervorbringen.

Die phylogenetischen Erkenntnisse und genetischen Sequenzdaten dieser Forschungsarbeit können helfen weitere Forschung voranzutreiben und die Züchtung von neuen Sorten zu erleichtern.

Quelle:
Paterson, A. H. et al. (2012): Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. In: Nature 492, 423–427, 20. Dezember 2012, doi: 10.1038/nature11798.

Paterson, A. H. et al. | Pflanzenforschung.de
Weitere Informationen:
http://www.pflanzenforschung.de/journal/aktuelles/die-entstehung-der-baumwollfasern?page=0,0&piwik_campaign=newsletter

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Diabetesforschung: Neuer Mechanismus zur Regulation des Insulin-Stoffwechsels gefunden
06.12.2016 | Universität Osnabrück

nachricht Was nach der Befruchtung im Zellkern passiert
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops

Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen

06.12.2016 | Förderungen Preise

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften