Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wer entscheidet im Gehirn?

15.01.2013
Entscheidungen in der Gesellschaft oder Natur ergeben sich meist durch ein komplexes Zusammenspiel vieler Faktoren.

Es ist oft ein Rätsel, welcher Faktor am Ende wie viel Einfluss auf das Ergebnis hatte. Für Hirnforscher stellt sich ein ähnliches Problem, da Entscheidungen immer auf der Aktivität vieler Nervenzellen beruhen.


Große Vogelschwärme ändern in kürzester Zeit ihre Richtung, ohne dass klar ist, wie diese Entscheidung entsteht und ob manche Vögel einen größeren Einfluss auf die Flugrichtung haben als andere. Da die Flugrichtung eines einzelnen Vogels von der seiner Nachbarvögel abhängt, ist die Antwort außerordentlich kompliziert. Ein ähnliches Problem stellt sich auch für Neurowissenschaftler, die herausfinden wollen, welche Neuronen in einem großen Netzwerk wirklich an einer bestimmten Entscheidung beteiligt sind.

Foto: Christoffer A. Rasmussen, CreativeCommons CC 1.0

In einer im Rahmen des Bernstein Netzwerks geförderten Zusammenarbeit der Universität Tübingen und des Max-Planck-Instituts für biologische Kybernetik haben Forscher um CIN Professor Matthias Bethge gezeigt, wie man trotz gegenseitiger Abhängigkeiten bestimmen kann, welchen Einfluss verschiedene Neurone auf Entscheidungsprozesse haben.

Wenn wir auf der anderen Straßenseite eine Person entdecken, die viel Ähnlichkeit mit einem Freund hat, gelangt diese Information über viele sensorische Nervenzellen in unser Gehirn. Welches der vielen Neurone liefert aber das relevante Signal an die höheren Hirnbereiche, die letztendlich entscheiden, dass es tatsächlich der Freund ist und wir winken und „Hallo“ rufen? Eine Forschergruppe um Matthias Bethge hat nun eine mathematische Formel entwickelt, mit der sich berechnen lässt, wie sehr ein einzelnes sensorisches Neuron in diesem Entscheidungsprozess beteiligt ist.

Um dieser Frage näher zu kommen hat man sich bisher angeschaut, welche Information ein sensorisches Neuron über die endgültige Entscheidung hat. Ebenso wie eine Person sich verdächtig macht, wenn sie „Insiderwissen“ über ein Verbrechen besitzt, liegt es nahe anzunehmen, dass Neurone, deren Aktivität Informationen über die Entscheidung enthält, auch Einfluss auf die Entscheidung zu haben. Das Problem dieses Ansatzes ist jedoch, dass Neurone – wie auch Personen – miteinander kommunizieren. Ein sensorisches Neuron, welches an der Entscheidung gar nicht selbst beteiligt ist, kann daher diese Information von einer Nachbarzelle bekommen haben und einfach nur „mitreden“.

Das relevante Signal, welches an die höheren Entscheidungsareale im Gehirn geleitet wurde, ist jedoch von der Nachbarzelle gesendet worden. Die jetzt von Wissenschaftlern neu entwickelte Formel berücksichtigt daher nicht nur, welche neuronale Aktivität etwas über die Entscheidung aussagt, sondern lässt auch Informationen über die Kommunikation der Zellen untereinander einfließen. So kann bestimmt werden, wie viel Gewicht die Aktivität eines einzelnen Neurons im Entscheidungsprozess hat.

Mithilfe der Formel lässt sich nun in Experimenten genau untersuchen, welche Nervenzellen letztendlich an Entscheidungen beteiligt sind, und ob es nur einige wenige, hoch informative, oder eher viele sensorische Neurone sind, die schließlich zur Handlungsentscheidung führen. Auf diese Weise kann nun die grundsätzliche Frage beantwortet werden, bei welchen Entscheidungen das Gehirn seine Informationen optimal nutzt und bei welchen nicht.

Das Nationale Bernstein Netzwerk Computational Neuroscience wurde 2004 vom Bundesministerium für Bildung und Forschung (BMBF) ins Leben gerufen, um die neue Forschungsdisziplin Computational Neuroscience in Deutschland nachhaltig zu etablieren. Inzwischen hat sich das Netzwerk mithilfe der BMBF-Förderung zu einem größten Forschungsnetze im Bereich der Computational Neuroscience weltweilt entwickelt. Namensgeber des Netzwerk ist der deutschen Physiologe Julius Bernstein (1835-1917).

Das Werner Reichardt Centrum für Integrative Neurowissenschaften (CIN) ist eine interdisziplinäre Institution an der Eberhard Karls Universität Tübingen, finanziert von der Deutschen Forschungsgemeinschaft im Rahmen der Exzellenzinitiative von Bund und Ländern. Ziel des CIN ist es, zu einem tieferen Verständnis von Hirnleistungen beizutragen und zu klären, wie Erkrankungen diese Leistungen beeinträchtigen. Das CIN wird von der Überzeugung geleitet, dass dieses Bemühen nur erfolgreich sein kann, wenn ein integrativer Ansatz gewählt wird.

Weitere Informationen erteilt Ihnen gerne:
Dr. Ralf Haefner
Volen National Center for Complex Systems,
Volen 208/MS 013,
Brandeis University,
Waltham, MA 02454 (USA)
eMail: ralf@brandeis.edu
Tel: +1 (781) 786 1683

Prof. Dr. Matthias Bethge
Werner Reichardt Zentrum für Integrative Neurowissenschaften,
Universität Tübingen,
Max-Planck-Institut für Biologische Kybernetik und
Bernstein Zentrum für Computational Neuroscience
Otfried-Müllerstr. 25
D-72076 Tübingen
eMail: matthias@bethgelab.org
Tel: +49 (0)7071-29 89017

Originalpublikation:
Haefner R.M., Gerwinn S., Macke J.H., Bethge M. (2013): „Inferring decoding strategies from choice probabilities in the presence of correlated variability“. Nature Neuroscience: Jan 13, 2013

http://dx.doi.org/10.1038/nn.3309

Weitere Informationen:

http://www.bethgelab.org
Homepage der Arbeitsgruppe

http://www.bccn-tuebingen.de
Bernstein Zentrum Tübingen

http://www.uni-tuebingen.de
Universität Tübingen

http://www.kyb.tuebingen.mpg.de
Max-Planck-Institut für Biologische Kybernetik

http://www.cin.uni-tuebingen.de
Werner Reichardt Centrum für Integrative Neurowissenschaften

http://www.nncn.de
Nationales Bernstein Netzwerk Computational Neuroscience

Mareike Kardinal | idw
Weitere Informationen:
http://dx.doi.org/10.1038/nn.3309
http://www.brandeis.edu
http://www.bernstein-netzwerk.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften