Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wer entscheidet im Gehirn?

15.01.2013
Entscheidungen in der Gesellschaft oder Natur ergeben sich meist durch ein komplexes Zusammenspiel vieler Faktoren.

Es ist oft ein Rätsel, welcher Faktor am Ende wie viel Einfluss auf das Ergebnis hatte. Für Hirnforscher stellt sich ein ähnliches Problem, da Entscheidungen immer auf der Aktivität vieler Nervenzellen beruhen.


Große Vogelschwärme ändern in kürzester Zeit ihre Richtung, ohne dass klar ist, wie diese Entscheidung entsteht und ob manche Vögel einen größeren Einfluss auf die Flugrichtung haben als andere. Da die Flugrichtung eines einzelnen Vogels von der seiner Nachbarvögel abhängt, ist die Antwort außerordentlich kompliziert. Ein ähnliches Problem stellt sich auch für Neurowissenschaftler, die herausfinden wollen, welche Neuronen in einem großen Netzwerk wirklich an einer bestimmten Entscheidung beteiligt sind.

Foto: Christoffer A. Rasmussen, CreativeCommons CC 1.0

In einer im Rahmen des Bernstein Netzwerks geförderten Zusammenarbeit der Universität Tübingen und des Max-Planck-Instituts für biologische Kybernetik haben Forscher um CIN Professor Matthias Bethge gezeigt, wie man trotz gegenseitiger Abhängigkeiten bestimmen kann, welchen Einfluss verschiedene Neurone auf Entscheidungsprozesse haben.

Wenn wir auf der anderen Straßenseite eine Person entdecken, die viel Ähnlichkeit mit einem Freund hat, gelangt diese Information über viele sensorische Nervenzellen in unser Gehirn. Welches der vielen Neurone liefert aber das relevante Signal an die höheren Hirnbereiche, die letztendlich entscheiden, dass es tatsächlich der Freund ist und wir winken und „Hallo“ rufen? Eine Forschergruppe um Matthias Bethge hat nun eine mathematische Formel entwickelt, mit der sich berechnen lässt, wie sehr ein einzelnes sensorisches Neuron in diesem Entscheidungsprozess beteiligt ist.

Um dieser Frage näher zu kommen hat man sich bisher angeschaut, welche Information ein sensorisches Neuron über die endgültige Entscheidung hat. Ebenso wie eine Person sich verdächtig macht, wenn sie „Insiderwissen“ über ein Verbrechen besitzt, liegt es nahe anzunehmen, dass Neurone, deren Aktivität Informationen über die Entscheidung enthält, auch Einfluss auf die Entscheidung zu haben. Das Problem dieses Ansatzes ist jedoch, dass Neurone – wie auch Personen – miteinander kommunizieren. Ein sensorisches Neuron, welches an der Entscheidung gar nicht selbst beteiligt ist, kann daher diese Information von einer Nachbarzelle bekommen haben und einfach nur „mitreden“.

Das relevante Signal, welches an die höheren Entscheidungsareale im Gehirn geleitet wurde, ist jedoch von der Nachbarzelle gesendet worden. Die jetzt von Wissenschaftlern neu entwickelte Formel berücksichtigt daher nicht nur, welche neuronale Aktivität etwas über die Entscheidung aussagt, sondern lässt auch Informationen über die Kommunikation der Zellen untereinander einfließen. So kann bestimmt werden, wie viel Gewicht die Aktivität eines einzelnen Neurons im Entscheidungsprozess hat.

Mithilfe der Formel lässt sich nun in Experimenten genau untersuchen, welche Nervenzellen letztendlich an Entscheidungen beteiligt sind, und ob es nur einige wenige, hoch informative, oder eher viele sensorische Neurone sind, die schließlich zur Handlungsentscheidung führen. Auf diese Weise kann nun die grundsätzliche Frage beantwortet werden, bei welchen Entscheidungen das Gehirn seine Informationen optimal nutzt und bei welchen nicht.

Das Nationale Bernstein Netzwerk Computational Neuroscience wurde 2004 vom Bundesministerium für Bildung und Forschung (BMBF) ins Leben gerufen, um die neue Forschungsdisziplin Computational Neuroscience in Deutschland nachhaltig zu etablieren. Inzwischen hat sich das Netzwerk mithilfe der BMBF-Förderung zu einem größten Forschungsnetze im Bereich der Computational Neuroscience weltweilt entwickelt. Namensgeber des Netzwerk ist der deutschen Physiologe Julius Bernstein (1835-1917).

Das Werner Reichardt Centrum für Integrative Neurowissenschaften (CIN) ist eine interdisziplinäre Institution an der Eberhard Karls Universität Tübingen, finanziert von der Deutschen Forschungsgemeinschaft im Rahmen der Exzellenzinitiative von Bund und Ländern. Ziel des CIN ist es, zu einem tieferen Verständnis von Hirnleistungen beizutragen und zu klären, wie Erkrankungen diese Leistungen beeinträchtigen. Das CIN wird von der Überzeugung geleitet, dass dieses Bemühen nur erfolgreich sein kann, wenn ein integrativer Ansatz gewählt wird.

Weitere Informationen erteilt Ihnen gerne:
Dr. Ralf Haefner
Volen National Center for Complex Systems,
Volen 208/MS 013,
Brandeis University,
Waltham, MA 02454 (USA)
eMail: ralf@brandeis.edu
Tel: +1 (781) 786 1683

Prof. Dr. Matthias Bethge
Werner Reichardt Zentrum für Integrative Neurowissenschaften,
Universität Tübingen,
Max-Planck-Institut für Biologische Kybernetik und
Bernstein Zentrum für Computational Neuroscience
Otfried-Müllerstr. 25
D-72076 Tübingen
eMail: matthias@bethgelab.org
Tel: +49 (0)7071-29 89017

Originalpublikation:
Haefner R.M., Gerwinn S., Macke J.H., Bethge M. (2013): „Inferring decoding strategies from choice probabilities in the presence of correlated variability“. Nature Neuroscience: Jan 13, 2013

http://dx.doi.org/10.1038/nn.3309

Weitere Informationen:

http://www.bethgelab.org
Homepage der Arbeitsgruppe

http://www.bccn-tuebingen.de
Bernstein Zentrum Tübingen

http://www.uni-tuebingen.de
Universität Tübingen

http://www.kyb.tuebingen.mpg.de
Max-Planck-Institut für Biologische Kybernetik

http://www.cin.uni-tuebingen.de
Werner Reichardt Centrum für Integrative Neurowissenschaften

http://www.nncn.de
Nationales Bernstein Netzwerk Computational Neuroscience

Mareike Kardinal | idw
Weitere Informationen:
http://dx.doi.org/10.1038/nn.3309
http://www.brandeis.edu
http://www.bernstein-netzwerk.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie