Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entscheidend ist die Kopplung von Zellskelett und Zellmembran

12.11.2012
In nachgebildeten Kapillargefäßen sind Augsburger Physiker der wichtigen Rolle des Zellskelettes für die enorme Flexibilität von roten Blutkörperchen auf die Spur gekommen. / Mit Mikrokanälen arbeitende Messmethode verspricht hohes Anwendungspotential in der Diagnostik von Erbkrankheiten.

Die Zellfunktion kann durch die Entkopplung von Zellskelett und Zellmembran mittels Zufuhr des energiereichen Moleküls ATP reguliert werden. Wie sie zu diesem Ergebnis mit seinem hohem Anwendungspotential für die medizinische Diagnostik gekommen sind, berichten Augsburger Nanowissenschaftler um den Physiker Prof. Dr. Thomas Franke in einem zum Front Cover-Artikel gekürten Beitrag der Ausgabe 44/2012 der renommierten Zeitschrift "Soft Matter".


Das Titelfoto von Soft Matter 44/2012 zeigt, wie die roten Blutkörperchen - bedingt durch die Reorganisation des Zellskeletts - beim abrupten Verlassen des engen Mikrokanals einerseits sofort wieder ihre Ruheform annehmen, um sich andererseits in einem deutlich langsameren Prozess zu drehen.

Das Blut wird im menschlichen Organismus permanent durch das Gefäßsystem gepumpt. Dabei durchlaufen seine Hauptbestandteile, die roten Blutkörperchen, während ihrer Lebensdauer von etwa 120 Tagen unzählige Male Arterien und Venen des Körpers. Viele dieser kleinsten Blutgefäße haben lediglich einen Durchmesser von wenigen tausendstel Milimetern und sind damit kleiner als die Blutkörperchen selbst. Erst die enorme Flexibilität und Deformierbarkeit der roten Blutkörperchen macht es möglich, dass sie diesen Stress unbeschadet überstehen.

Diese außerordentliche Anpassungsfähigkeit der roten Blutkörperchen liegt in ihrem "Bauplan" begründet. Sie sind keine prall aufgeblasenen "Luftballone", die bei einwirkendem Druck platzen würden, sondern gleichen eher einem "schlaffen Beutel", den man auch als einen beidseitig eingedellten Pfannekuchen oder Diskus beschreiben könnte. Auch ihr innerer Aufbau ist sehr ausgeklügelt. Die äußere Hülle der roten Blutkörperchen, die Lipidmembran, wird von einem im Zellinneren verankerten Zellskelett stabilisiert. Dieses Zellskelett reorganisiert sich permanent selbst, um so aktiv auf äußere Reize reagieren zu können. Ähnlich wie bei Verbundwerkstoffen ist es dieser "komposite Aufbau", der den roten Blutkörperchen ihre einzigartigen Eigenschaften verleiht.

Wissenschaftler um den Softmatter-Spezialisten Prof. Dr. Thomas Franke haben am Augsburger Lehrstuhl für Experimentalphysik I nun herausgefunden, dass Zellmembran und Zellskelett keineswegs unabhängig voneinander sind und (re)agieren, sondern dass die Antwort der Zelle auf eine äußere Beanspruchung von ihnen gewissermaßen gemeinsam ab- und bestimmt wird. In kleinsten künstlichen Mikrokanälen, die feine Kapillargefäße des Blutsystems nachbilden, haben die Augsburger Forscher das Deformationsverhalten der roten Blutkörperchen studiert. Dazu haben sie Zellen, durch von ihnen nachgebildete Kapillargefäße gezwängt und mit einer Hochgeschwindigkeitskamera beobachtet, wie sie reagieren, wenn sich der Mikrokanaldurchmesser schlagartig weitet.

Festgestellt werden konnte dabei, dass die Zellen nach dem abrupten Verlassen der Verengung zunächst extrem schnell wieder zum eingedellten "Pfannekuchen" werden, auf diese blitzartige Rückumwandlung in die Ruheform dann aber ein weiterer, mehrere Sekunden anhaltender und damit um ein Vielfaches langsamerer Prozess folgt, bei dem sich die bereits wieder in die Ruheform zurückgekehrten Zellen aufgrund der anhaltenden Reorganisation des verscherten Zellskeletts drehen.

Dass diese beiden in ihrer Ausprägung und in ihrem zeitlichen Verhalten völlig unterschiedlichen Prozesse - also die schlagartige Rückkehr in die Ruheform einerseits und die langsamere Drehung andererseits - von ein und demselben Parameter, von der Reorganisation des Zellskeletts nämlich, abhängig sind, konnten Franke und seine Kollegen zeigen, indem sie bei ihrem Versuch Membran und Skelett der Zellen durch Zufuhr des Moleküls ATP voneinander abkoppelten. ATP ist der universelle Energieträger in lebenden Organismen. "Wir haben gesehen", so Franke, "dass die durch die Zufuhr von ATP verursachte Trennung des Zellskeletts von der Zellmembran zu einer Deformation der Zelle führt. Da eine solche Deformation die biologischen Funktionen der Zelle - etwa die Sauerstoffaufnahme - bekanntermaßen entscheidend beeinflusst, bedeutet dies, dass die Zellfunktion durch die Trennung von Membran und Skelett mittels ATP-Zufuhr reguliert werden kann. Und das heißt zugleich, dass Störungen bei der Anknüpfung des Zellskeletts an die Zellmembran, wie sie bei zahlreichen Erbkrankheiten charakteristisch sind, mit unserer Technik direkt nachgewiesen werden können. Unsere Messmethode in Mikrokanälen eignet sich insofern besonders auch für den Einsatz in der Diagnostik solcher Krankheiten."

Originalbeitrag:

Thomas Franke et al.:
Hydrodynamic deformation reveals two coupled modes/time scales of red blood cell relaxation, http://pubs.rsc.org/en/content/articlelanding/2012/sm/c2sm26513c/unauth;

erscheint als Front Cover-Artikel in: Soft Matter, Volume 8, Number 44, 28 November 2012

Kontakt:

Prof. Dr. Thomas Franke
Softmatter and Biological Physics
Lehrstuhl für Experimentalphysik I
Universität Augsburg
86135 Augsburg
Telefon +49(0)821-598-3312
thomas.franke@physik.uni-augsburg.de

Klaus P. Prem | idw
Weitere Informationen:
http://pubs.rsc.org/en/content/articlelanding/2012/sm/c2sm26513c/unauth
http://www.physik.uni-augsburg.de/lehrstuehle/exp1/mitarbeiter/franke_thomas/
http://www.uni-augsburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie