Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entscheidend ist die Kopplung von Zellskelett und Zellmembran

12.11.2012
In nachgebildeten Kapillargefäßen sind Augsburger Physiker der wichtigen Rolle des Zellskelettes für die enorme Flexibilität von roten Blutkörperchen auf die Spur gekommen. / Mit Mikrokanälen arbeitende Messmethode verspricht hohes Anwendungspotential in der Diagnostik von Erbkrankheiten.

Die Zellfunktion kann durch die Entkopplung von Zellskelett und Zellmembran mittels Zufuhr des energiereichen Moleküls ATP reguliert werden. Wie sie zu diesem Ergebnis mit seinem hohem Anwendungspotential für die medizinische Diagnostik gekommen sind, berichten Augsburger Nanowissenschaftler um den Physiker Prof. Dr. Thomas Franke in einem zum Front Cover-Artikel gekürten Beitrag der Ausgabe 44/2012 der renommierten Zeitschrift "Soft Matter".


Das Titelfoto von Soft Matter 44/2012 zeigt, wie die roten Blutkörperchen - bedingt durch die Reorganisation des Zellskeletts - beim abrupten Verlassen des engen Mikrokanals einerseits sofort wieder ihre Ruheform annehmen, um sich andererseits in einem deutlich langsameren Prozess zu drehen.

Das Blut wird im menschlichen Organismus permanent durch das Gefäßsystem gepumpt. Dabei durchlaufen seine Hauptbestandteile, die roten Blutkörperchen, während ihrer Lebensdauer von etwa 120 Tagen unzählige Male Arterien und Venen des Körpers. Viele dieser kleinsten Blutgefäße haben lediglich einen Durchmesser von wenigen tausendstel Milimetern und sind damit kleiner als die Blutkörperchen selbst. Erst die enorme Flexibilität und Deformierbarkeit der roten Blutkörperchen macht es möglich, dass sie diesen Stress unbeschadet überstehen.

Diese außerordentliche Anpassungsfähigkeit der roten Blutkörperchen liegt in ihrem "Bauplan" begründet. Sie sind keine prall aufgeblasenen "Luftballone", die bei einwirkendem Druck platzen würden, sondern gleichen eher einem "schlaffen Beutel", den man auch als einen beidseitig eingedellten Pfannekuchen oder Diskus beschreiben könnte. Auch ihr innerer Aufbau ist sehr ausgeklügelt. Die äußere Hülle der roten Blutkörperchen, die Lipidmembran, wird von einem im Zellinneren verankerten Zellskelett stabilisiert. Dieses Zellskelett reorganisiert sich permanent selbst, um so aktiv auf äußere Reize reagieren zu können. Ähnlich wie bei Verbundwerkstoffen ist es dieser "komposite Aufbau", der den roten Blutkörperchen ihre einzigartigen Eigenschaften verleiht.

Wissenschaftler um den Softmatter-Spezialisten Prof. Dr. Thomas Franke haben am Augsburger Lehrstuhl für Experimentalphysik I nun herausgefunden, dass Zellmembran und Zellskelett keineswegs unabhängig voneinander sind und (re)agieren, sondern dass die Antwort der Zelle auf eine äußere Beanspruchung von ihnen gewissermaßen gemeinsam ab- und bestimmt wird. In kleinsten künstlichen Mikrokanälen, die feine Kapillargefäße des Blutsystems nachbilden, haben die Augsburger Forscher das Deformationsverhalten der roten Blutkörperchen studiert. Dazu haben sie Zellen, durch von ihnen nachgebildete Kapillargefäße gezwängt und mit einer Hochgeschwindigkeitskamera beobachtet, wie sie reagieren, wenn sich der Mikrokanaldurchmesser schlagartig weitet.

Festgestellt werden konnte dabei, dass die Zellen nach dem abrupten Verlassen der Verengung zunächst extrem schnell wieder zum eingedellten "Pfannekuchen" werden, auf diese blitzartige Rückumwandlung in die Ruheform dann aber ein weiterer, mehrere Sekunden anhaltender und damit um ein Vielfaches langsamerer Prozess folgt, bei dem sich die bereits wieder in die Ruheform zurückgekehrten Zellen aufgrund der anhaltenden Reorganisation des verscherten Zellskeletts drehen.

Dass diese beiden in ihrer Ausprägung und in ihrem zeitlichen Verhalten völlig unterschiedlichen Prozesse - also die schlagartige Rückkehr in die Ruheform einerseits und die langsamere Drehung andererseits - von ein und demselben Parameter, von der Reorganisation des Zellskeletts nämlich, abhängig sind, konnten Franke und seine Kollegen zeigen, indem sie bei ihrem Versuch Membran und Skelett der Zellen durch Zufuhr des Moleküls ATP voneinander abkoppelten. ATP ist der universelle Energieträger in lebenden Organismen. "Wir haben gesehen", so Franke, "dass die durch die Zufuhr von ATP verursachte Trennung des Zellskeletts von der Zellmembran zu einer Deformation der Zelle führt. Da eine solche Deformation die biologischen Funktionen der Zelle - etwa die Sauerstoffaufnahme - bekanntermaßen entscheidend beeinflusst, bedeutet dies, dass die Zellfunktion durch die Trennung von Membran und Skelett mittels ATP-Zufuhr reguliert werden kann. Und das heißt zugleich, dass Störungen bei der Anknüpfung des Zellskeletts an die Zellmembran, wie sie bei zahlreichen Erbkrankheiten charakteristisch sind, mit unserer Technik direkt nachgewiesen werden können. Unsere Messmethode in Mikrokanälen eignet sich insofern besonders auch für den Einsatz in der Diagnostik solcher Krankheiten."

Originalbeitrag:

Thomas Franke et al.:
Hydrodynamic deformation reveals two coupled modes/time scales of red blood cell relaxation, http://pubs.rsc.org/en/content/articlelanding/2012/sm/c2sm26513c/unauth;

erscheint als Front Cover-Artikel in: Soft Matter, Volume 8, Number 44, 28 November 2012

Kontakt:

Prof. Dr. Thomas Franke
Softmatter and Biological Physics
Lehrstuhl für Experimentalphysik I
Universität Augsburg
86135 Augsburg
Telefon +49(0)821-598-3312
thomas.franke@physik.uni-augsburg.de

Klaus P. Prem | idw
Weitere Informationen:
http://pubs.rsc.org/en/content/articlelanding/2012/sm/c2sm26513c/unauth
http://www.physik.uni-augsburg.de/lehrstuehle/exp1/mitarbeiter/franke_thomas/
http://www.uni-augsburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Auslöser für eine schwere Krankheit
25.07.2016 | Julius-Maximilians-Universität Würzburg

nachricht Für Sprünge ans rettende Ufer: Käfer reduziert Oberflächenspannung mit körpereigener Substanz
25.07.2016 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superschneller Internetfunk dank Terahertz-Strahlung

Wissenschaftler aus Dresden und Dublin haben einen vielversprechenden technologischen Ansatz gefunden, der Notebooks und anderen mobilen Computern in Zukunft deutlich schnellere Internet-Funkzugänge ermöglichen könnte als bisher. Die Teams am Helmholtz-Zentrum Dresden-Rossendorf (HZDR) und am irischen Trinity College Dublin brachten hauchdünne Schichten aus einer speziellen Verbindung von Mangan und Gallium dazu, sehr effizient Strahlung im sogenannten Terahertz-Frequenzbereich auszusenden. Als Sender in WLAN-Funknetzen eingesetzt, könnten die höheren Frequenzen die Datenraten zukünftiger Kommunikations-Netzwerke spürbar erhöhen.

„Wir halten diesen Ansatz für technologisch sehr interessant“, betont Dr. Michael Gensch, Leiter einer Arbeitsgruppe am HZDR, die sich mit den...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Forschen in 15 Kilometern Höhe - Einsatz des Flugzeuges HALO wird weiter gefördert

Das moderne Höhen-Forschungsflugzeug HALO (High Altitude and Long Range Research Aircraft) wird auch in Zukunft für Projekte zur Atmosphären- und Erdsystemforschung eingesetzt werden können: Die Deutsche Forschungsgemeinschaft (DFG) bewilligte jetzt Fördergelder von mehr als 11 Millionen Euro für die nächste Phase des HALO Schwerpunktprogramms (SPP 1294) in den kommenden drei Jahren. Die Universität Leipzig ist neben der Goethe-Universität Frankfurt am Main und der Technischen Universität Dresden federführend bei diesem DFG-Schwerpunktprogramm.

Die Universität Leipzig wird von der Fördersumme knapp 6 Millionen Euro zur Durchführung von zwei Forschungsprojekten mit HALO sowie zur Deckung der hohen...

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Rekord in der Hochdruckforschung: 1 Terapascal erstmals erreicht und überschritten

Einem internationalen Forschungsteam um Prof. Dr. Natalia Dubrovinskaia und Prof. Dr. Leonid Dubrovinsky von der Universität Bayreuth ist es erstmals gelungen, im Labor einen Druck von 1 Terapascal (= 1.000.000.000.000 Pascal) zu erzeugen. Dieser Druck ist dreimal höher als der Druck, der im Zentrum der Erde herrscht. Die in 'Science Advances' veröffentlichte Studie eröffnet neue Forschungsmöglichkeiten für die Physik und Chemie der Festkörper, die Materialwissenschaft, die Geophysik und die Astrophysik.

Extreme Drücke und Temperaturen, die im Labor mit hoher Präzision erzeugt und kontrolliert werden, sind ideale Voraussetzungen für die Physik, Chemie und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress für Molekulare Medizin: Krankheiten interdisziplinär verstehen und behandeln

20.07.2016 | Veranstaltungen

Ultraschnelle Kalorimetrie: Gesellschaft für thermische Analyse GEFTA lädt zur Jahrestagung

19.07.2016 | Veranstaltungen

Das neue Präventionsgesetz aktiv gestalten

19.07.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Mineral-Kunststoff“ mit hohem Potenzial für die Zukunft

25.07.2016 | Materialwissenschaften

Neue Auslöser für eine schwere Krankheit

25.07.2016 | Biowissenschaften Chemie

TurboLight: Mehr Effizienz für Turbomaschinen durch Leichtbauweise mit Laserlicht

25.07.2016 | Materialwissenschaften