Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entfesselte Hirn-Stammzellen

29.07.2014

Enthüllt: Wie Hirn-Stammzellen in der sich entwickelnden Großhirnrinde die Zellteilungsmaschine regulieren, so dass Nervenzellen gebildet werden

Damit unser Gehirn sich gesund entwickeln und wachsen kann, vermehren  sich Hirn-Stammzellen zunächst und beginnen erst danach, Nervenzellen zu bilden. Forscher am Max-Planck-Institut für molekulare Zellbiologie und Genetik (MPI-CBG) in Dresden berichten jetzt in der Fachzeitschrift eLife, wie Hirn-Stammzellen in der sich entwickelnden Großhirnrinde (Neokortex) den Wechsel von Zellteilungen, bei denen Stammzellen vermehrt werden, zu Zellteilungen, bei denen Nervenzellen gebildet werden, steuern können.


Sich teilende Hirn-Stammzellen in der embryonalen Großhirnrinde der Maus.

Die weißen Fasern in der Metaphasen-Zelle in der Mitte des Bildes sind mitotische Mikrotubuli. Ein Beispiel für einen apikalen astralen Mikrotubulus ist die lange weiße Faser, die sich vom linken Spindelpol dieser Zelle (rot) zur apikalen Zellmembran (grün) erstreckt. Solche apikalen (und auch basalen) astralen Mikrotubuli ermöglichen eine symmetrische Zellteilung, welche die Zelle senkrecht teilt (siehe die Anaphasen-Zelle rechts von der Metaphasen-Zelle). Die Chromosomen sind blau angefärbt, und die Zentrosomen rot.

Bildautor: Felipe Mora-Bermúdez

Sie identifizierten eine bestimmte Komponente des Zellskeletts, nämlich eine Subpopulation von Mikrotubuli, welche die Ausrichtung der Zellteilungsmaschinerie regulieren, und damit die Art der Zellteilung. Die Studie wirft neues Licht darauf, wie die Teilung von Hirn-Stammzellen – und damit die Entwicklung des Gehirns – gesteuert wird.

Während der Entwicklung des Gehirns von Säugetieren vermehren sich Hirn-Stammzellen zunächst durch symmetrische Zellteilungen, durch die jeweils zwei neue Stammzellen entstehen.  Später wechseln diese zu asymmetrischen Zellteilungen, bei denen jeweils eine Stammzelle und eine Nervenzelle (bzw. eine Nervenzellvorläuferzelle) gebildet werden.

 In einer sich teilenden Zelle verteilt die mitotische Spindel – eine multimolekulare Maschine – wesentliche Zellbestandteile wie die Chromosomen auf die zwei neuen Tochterzellen. Bei der symmetrischen Teilung von Hirn-Stammzellen ist die Spindel so ausgerichtet, dass sich die Zelle vertikal entlang ihrer Längsachse teilen kann, das heißt von ihrer Unterseite hin zur Oberseite.

Dadurch werden die verschiedenen Zellkomponenten proportional gleich auf die beiden Tochter-Stammzellen verteilt. Bei der asymmetrischen Zellteilung hingegen ändert sich die Ausrichtung der Spindel, und die verschiedenen Zellkomponenten werden ungleich verteilt. Das hilft den Tochterzellen, sich zum Beispiel in Nervenzellen zu spezialisieren.

Die Ausrichtung der Spindel wird von sternenförmig angeordneten Mikrotubuli gesteuert – intrazelluläre Seile, welche die Spindel an der Zellmembran verankern. Klassische Studien zu Hirn-Stammzellen bei wirbellosen Tieren zeigten, dass die Spindel bei der asymmetrischen Zellteilung um volle 90° gedreht ist, um die Zelle horizontal statt vertikal zu teilen.

„Bei Säugetieren sind diese Neuausrichtungen der Spindel viel weniger ausgeprägt“, sagt Felipe Mora-Bermúdez, der die Experimente in Wieland Huttners Arbeitsgruppe am MPI-CBG durchführte. „ Wir wussten, dass sich die Spindeln in Säugetieren anders verhalten, aber hatten keine Ahnung, wie sie das machen“.

Um das herauszufinden, verwendeten die Wissenschaftler leistungsstarke Mikroskope, um die Teilung von Hirn-Stammzellen in der sich entwickelnden Großhirnrinde der Maus zu analysieren; diese Zellteilung ist der im Menschen sehr ähnlich. Im Gegensatz zu früheren Annahmen stellten die Forscher fest, dass nicht alle Mikrotubuli für die Ausrichtung der Spindel verantwortlich sind, sondern nur diejenigen, welche die Spindel mit der Oberseite (apikal) und der Unterseite (basal) der Zellmembran verbinden.

Für eine symmetrische Zellteilung sind viele der apikalen und basalen Mikrotubuli im Einsatz, um eine stabile Ausrichtung der Spindel für die vertikale Teilung zu gewährleisten. „ Es ist so ähnlich, wie wenn man ein Campingzelt aufbaut“, vergleicht Mora-Bermúdez. „Um das Zelt zu stabilisieren, muss man es mit vielen Abspannseilen fest im Boden verankern. Analog dazu muss bei einer symmetrischen Zellteilung die Spindel ebenfalls fest verankert sein."

Um den Wechsel zur asymmetrischen Zellteilung zu ermöglichen, verringert sich in den Hirn-Stammzellen die  Anzahl der apikalen und basalen Mikrotubuli. Die Spindel ist damit weniger festgebunden und kann sich freier bewegen, was wiederum eine Zellteilung auslöst, die weniger vertikal ist; dadurch können Nervenzellen gebildet werden.

„Die Kontrolle dieses Wechsels ist ausschlaggebend“, sagt Wieland Huttner, Direktor am MPI-CBG und Betreuer der Studie. „Fehler können zu Störungen in der Entwicklung des Nervensystems führen und sehr kleine Gehirne und geistige Behinderungen, wie Mikrozephalie oder  Lissenzephalie, zur Folge haben.

Die Studie eröffnet eine neue Perspektive zur neokortikalen Nervenzellbildung. Sie zeigt neue Zusammenhänge zwischen der Zellpolarität von Hirn-Stammzellen und ihrer symmetrischen bzw. asymmetrischen Teilung. Dies ist auch für die Evolution des Gehirns relevant, das sich bei den verschiedenen Säugetieren zu unterschiedlicher Größe entwickelt.

Originalveröffentlichung:

Mora-Bermúdez, Felipe; Matsuzaki, Fumio; Huttner, Wieland B. Specific polar subpopulations of astral microtubules control spindle orientation and symmetric neural stem cell division. eLife 2014, doi: 10.7554/eLife.02875

Link zur Veröffentlichung: http://elifesciences.org/content/early/2014/07/04/eLife.02875
 

Weitere Informationen:

Felipe Mora-Bermúdez
Max Planck Institute of 
Molecular Cell Biology and Genetics
Pfotenhauerstr. 108
01307 Dresden

Tel. +49 (351) 210 2907
eMail: mora@mpi-cbg.de

Wieland Huttner
Max Planck Institute of 
Molecular Cell Biology and Genetics
Pfotenhauerstr. 108
01307 Dresden

Tel. +49 (351) 210 1500
eMail: huttner@mpi-cbg.de

Katrin Boes | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-cbg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Vorstellung eines neuen Zellkultursystems für die Analyse von OPC-Zellen im Zebrafisch
23.10.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht Mehr Wissen über Proteine: Forscher aus Halle verbessern Massenspektrometrie-Verfahren
23.10.2017 | Martin-Luther-Universität Halle-Wittenberg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Antibiotikaresistenzen: Ein multiresistenter Escherichia coli-Stamm auf dem Vormarsch

23.10.2017 | Biowissenschaften Chemie

Sturmfeder bekämpft Orkanschäden

23.10.2017 | Maschinenbau

Vorstellung eines neuen Zellkultursystems für die Analyse von OPC-Zellen im Zebrafisch

23.10.2017 | Biowissenschaften Chemie