Entfesselte Hirn-Stammzellen

Sich teilende Hirn-Stammzellen in der embryonalen Großhirnrinde der Maus. Die weißen Fasern in der Metaphasen-Zelle in der Mitte des Bildes sind mitotische Mikrotubuli. Ein Beispiel für einen apikalen astralen Mikrotubulus ist die lange weiße Faser, die sich vom linken Spindelpol dieser Zelle (rot) zur apikalen Zellmembran (grün) erstreckt. Solche apikalen (und auch basalen) astralen Mikrotubuli ermöglichen eine symmetrische Zellteilung, welche die Zelle senkrecht teilt (siehe die Anaphasen-Zelle rechts von der Metaphasen-Zelle). Die Chromosomen sind blau angefärbt, und die Zentrosomen rot. Bildautor: Felipe Mora-Bermúdez

Damit unser Gehirn sich gesund entwickeln und wachsen kann, vermehren  sich Hirn-Stammzellen zunächst und beginnen erst danach, Nervenzellen zu bilden. Forscher am Max-Planck-Institut für molekulare Zellbiologie und Genetik (MPI-CBG) in Dresden berichten jetzt in der Fachzeitschrift eLife, wie Hirn-Stammzellen in der sich entwickelnden Großhirnrinde (Neokortex) den Wechsel von Zellteilungen, bei denen Stammzellen vermehrt werden, zu Zellteilungen, bei denen Nervenzellen gebildet werden, steuern können.

Sie identifizierten eine bestimmte Komponente des Zellskeletts, nämlich eine Subpopulation von Mikrotubuli, welche die Ausrichtung der Zellteilungsmaschinerie regulieren, und damit die Art der Zellteilung. Die Studie wirft neues Licht darauf, wie die Teilung von Hirn-Stammzellen – und damit die Entwicklung des Gehirns – gesteuert wird.

Während der Entwicklung des Gehirns von Säugetieren vermehren sich Hirn-Stammzellen zunächst durch symmetrische Zellteilungen, durch die jeweils zwei neue Stammzellen entstehen.  Später wechseln diese zu asymmetrischen Zellteilungen, bei denen jeweils eine Stammzelle und eine Nervenzelle (bzw. eine Nervenzellvorläuferzelle) gebildet werden.

 In einer sich teilenden Zelle verteilt die mitotische Spindel – eine multimolekulare Maschine – wesentliche Zellbestandteile wie die Chromosomen auf die zwei neuen Tochterzellen. Bei der symmetrischen Teilung von Hirn-Stammzellen ist die Spindel so ausgerichtet, dass sich die Zelle vertikal entlang ihrer Längsachse teilen kann, das heißt von ihrer Unterseite hin zur Oberseite.

Dadurch werden die verschiedenen Zellkomponenten proportional gleich auf die beiden Tochter-Stammzellen verteilt. Bei der asymmetrischen Zellteilung hingegen ändert sich die Ausrichtung der Spindel, und die verschiedenen Zellkomponenten werden ungleich verteilt. Das hilft den Tochterzellen, sich zum Beispiel in Nervenzellen zu spezialisieren.

Die Ausrichtung der Spindel wird von sternenförmig angeordneten Mikrotubuli gesteuert – intrazelluläre Seile, welche die Spindel an der Zellmembran verankern. Klassische Studien zu Hirn-Stammzellen bei wirbellosen Tieren zeigten, dass die Spindel bei der asymmetrischen Zellteilung um volle 90° gedreht ist, um die Zelle horizontal statt vertikal zu teilen.

„Bei Säugetieren sind diese Neuausrichtungen der Spindel viel weniger ausgeprägt“, sagt Felipe Mora-Bermúdez, der die Experimente in Wieland Huttners Arbeitsgruppe am MPI-CBG durchführte. „ Wir wussten, dass sich die Spindeln in Säugetieren anders verhalten, aber hatten keine Ahnung, wie sie das machen“.

Um das herauszufinden, verwendeten die Wissenschaftler leistungsstarke Mikroskope, um die Teilung von Hirn-Stammzellen in der sich entwickelnden Großhirnrinde der Maus zu analysieren; diese Zellteilung ist der im Menschen sehr ähnlich. Im Gegensatz zu früheren Annahmen stellten die Forscher fest, dass nicht alle Mikrotubuli für die Ausrichtung der Spindel verantwortlich sind, sondern nur diejenigen, welche die Spindel mit der Oberseite (apikal) und der Unterseite (basal) der Zellmembran verbinden.

Für eine symmetrische Zellteilung sind viele der apikalen und basalen Mikrotubuli im Einsatz, um eine stabile Ausrichtung der Spindel für die vertikale Teilung zu gewährleisten. „ Es ist so ähnlich, wie wenn man ein Campingzelt aufbaut“, vergleicht Mora-Bermúdez. „Um das Zelt zu stabilisieren, muss man es mit vielen Abspannseilen fest im Boden verankern. Analog dazu muss bei einer symmetrischen Zellteilung die Spindel ebenfalls fest verankert sein.“

Um den Wechsel zur asymmetrischen Zellteilung zu ermöglichen, verringert sich in den Hirn-Stammzellen die  Anzahl der apikalen und basalen Mikrotubuli. Die Spindel ist damit weniger festgebunden und kann sich freier bewegen, was wiederum eine Zellteilung auslöst, die weniger vertikal ist; dadurch können Nervenzellen gebildet werden.

„Die Kontrolle dieses Wechsels ist ausschlaggebend“, sagt Wieland Huttner, Direktor am MPI-CBG und Betreuer der Studie. „Fehler können zu Störungen in der Entwicklung des Nervensystems führen und sehr kleine Gehirne und geistige Behinderungen, wie Mikrozephalie oder  Lissenzephalie, zur Folge haben.

Die Studie eröffnet eine neue Perspektive zur neokortikalen Nervenzellbildung. Sie zeigt neue Zusammenhänge zwischen der Zellpolarität von Hirn-Stammzellen und ihrer symmetrischen bzw. asymmetrischen Teilung. Dies ist auch für die Evolution des Gehirns relevant, das sich bei den verschiedenen Säugetieren zu unterschiedlicher Größe entwickelt.

Originalveröffentlichung:

Mora-Bermúdez, Felipe; Matsuzaki, Fumio; Huttner, Wieland B. Specific polar subpopulations of astral microtubules control spindle orientation and symmetric neural stem cell division. eLife 2014, doi: 10.7554/eLife.02875

Link zur Veröffentlichung: http://elifesciences.org/content/early/2014/07/04/eLife.02875
 

Weitere Informationen:

Felipe Mora-Bermúdez
Max Planck Institute of 
Molecular Cell Biology and Genetics
Pfotenhauerstr. 108
01307 Dresden

Tel. +49 (351) 210 2907
eMail: mora@mpi-cbg.de

Wieland Huttner
Max Planck Institute of 
Molecular Cell Biology and Genetics
Pfotenhauerstr. 108
01307 Dresden

Tel. +49 (351) 210 1500
eMail: huttner@mpi-cbg.de

Media Contact

Katrin Boes Max-Planck-Institut

Weitere Informationen:

http://www.mpi-cbg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer