Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Energiesparen beginnt im Kopf

11.09.2009
Elektrische Signale im Gehirn kosten weniger Energie als erwartet

Die Leistungsfähigkeit des Gehirns hat seinen Preis: Sie benötigt sehr viel Energie. Wissenschaftler haben nun jedoch herausgefunden, dass elektrische Signale, die der Fortleitung von Information dienen, im Säugerhirn sehr effizient sind.

Demnach verbrauchen Nervenzellen von Säugern für diese sogenannten Aktionspotenziale ca. 3-mal weniger Energie als bisher aufgrund von klassischen Arbeiten am Tintenfisch angenommen: Während dieser pro Aktionspotenzial 4-mal mehr Energie als theoretisch notwendig umsetzt, sind es bei Säugern lediglich 1,3-mal mehr. (Science, 11. September 2009)

Das menschliche Gehirn benötigt etwa 1,5-mal so viel Energie pro Zeit wie das Herz, rund die Hälfte davon für den normalen Stoffwechsel der Nervenzellen. Von der verbleibenden Hälfte wird ein Teil zur Bildung elektrischer Signale aufgewendet, mit denen die Nervenzellen miteinander kommunizieren. Das für die Gehirnfunktion besonders bedeutungsvolle Aktionspotenzial entsteht durch den Ein- und Ausstrom von elektrisch geladenen Atomen (Ionen). Dabei strömen positiv geladene Natrium-Ionen durch Proteine in der Zellmembran (Natriumkanäle) in die Nervenzelle und laden das ursprünglich elektrisch negative Zellinnere positiv auf (Abb.). Positiv geladene Kalium-Ionen fließen durch Kaliumkanäle aus dem Zellinnern nach außen und lassen die Nervenzelle wieder negativ werden.

Zeitlicher Verlauf der Ionenströme bestimmt Energieverbrauch

Um nach einem Aktionspotenzial die ursprüngliche Ionenverteilung wieder herzustellen, müssen Natrium-Ionen unter Energieaufwand aus der Zelle hinaus und Kalium-Ionen hinein gepumpt werden. Ihr Energiebedarf hängt daher eng damit zusammen, wann wie viele Ionen ein- und ausströmen. Forscher vom Max-Planck-Institut für Hirnforschung in Frankfurt und der Universität London haben deshalb diese Ionenströme in Nervenfasern (Axonen) in der Hippocampus-Region des Rattengehirns untersucht. Diese Axone sind wie die meisten anderen in der Hirnrinde von Säugern nicht von Hilfszellen umwickelt (unmyelinisiert) und stehen im Verdacht, wegen der ungünstigen Abfolge der Ionenströme während des Aktionspotenzials sehr viel Energie zu benötigen.

Die Wissenschaftler haben nun allerdings festgestellt, dass die Ionenströme energiesparend zusammenspielen: Der Natrium-Einstrom und der ihm entgegenwirkende Kalium-Ausstrom überlappen zeitlich nur wenig. Verantwortlich dafür ist das genau abgestimmte Öffnen und Schließen der Natrium- und Kaliumkanäle. Deshalb fließt Computersimulationen zufolge nur 1,3-mal mehr Natrium in die Zelle als theoretisch notwendig. "Die Zelle müsste deutlich mehr Energie für das Zurückpumpen aufwenden, wenn viele Natrium- und Kalium-Ionen gleichzeitig fließen würden, ohne einen elektrischen Netto-Effekt zu haben. Entscheidend für einen niedrigen Energieverbrauch ist deshalb, dass der Natrium-Einstrom möglichst wieder gedrosselt wird, bevor die ausströmenden Kalium-Ionen die positivierende Wirkung der Natrium-Ionen aufheben", erklärt Henrik Alle vom Max-Planck-Institut für Hirnforschung. Abschätzungen der Forscher zufolge erfordert die Signalübertragung an den Kontakten zwischen Nervenzellen, den Synapsen, ca. 6-mal so viel Energie wie die Signalfortleitung mittels Aktionspotenzialen zu den Kontaktstellen hin.

Effizienter Umgang mit Energie begrenzt hohen Energiebedarf

"Unsere Ergebnisse zeigen, dass zumindest diese unmyelinisierten Nervenzellfortsätze von Säugetieren sehr viel effizienter Aktionspotenziale bilden als bisher angenommen. Wir schätzen es aber als sehr wahrscheinlich ein, daß unmyelinisierte Axone in der Hirnrinde generell energieeffiziente Aktionspotenziale bilden. Möglicherweise hat dies dazu beigetragen, dass sich komplexe Gehirne wie die der Säuger entwickeln konnten", vermutet Henrik Alle. Denn das menschliche Gehirn ist im Vergleich zu vielen anderen Organen ein Energiefresser: Obwohl es beim Erwachsenen nur etwa 2% des Körpergewichts ausmacht, ist es für fast 20% des Energieverbrauchs des Körpers verantwortlich. Ohne die jetzt entdeckte Effizienz wäre der Verbrauch noch höher.

Die von der Hertie-Stiftung geförderte Studie verändert nicht nur die Sicht der Wissenschaftler auf Zusammenhänge von Energie und Informationsverarbeitung im Gehirn und auf Modelle von Ionenkanälen, sie hat auch praktische Bedeutung: Mit ihrer Hilfe lassen sich Signale bildgebender Verfahren, die auf aktivitätsabhängigen Änderungen des lokalen Energieverbrauchs im Gehirn basieren wie die funktionelle Kernspintomografie künftig genauer interpretieren.

Originalveröffentlichung:

Henrik Alle, Arnd Roth, Jörg R. P. Geiger
Energy-Efficient Action Potentials in Hippocampal Mossy Fibers
Science, 11. September 2009
Weitere Informationen erhalten Sie von:
Dr. Henrik Alle
Max-Planck-Institut für Hirnforschung, Frankfurt/Main
Tel.: +49 (0)69 967 69-751
E-Mail: alle@mpih-frankfurt.mpg.de

Dr. Harald Rösch | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Rezeptoren auf der Arbeit
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rasche Umweltveränderungen begünstigen Artensterben
19.10.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mobilität 4.0: Konferenz an der Jacobs University

18.10.2017 | Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

18.10.2017 | Biowissenschaften Chemie

Biokunststoffe könnten auch in Traktoren die Richtung angeben

18.10.2017 | Messenachrichten

»ILIGHTS«-Studie gestartet: Licht soll Wohlbefinden von Schichtarbeitern verbessern

18.10.2017 | Energie und Elektrotechnik