Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Energiesparen beginnt im Kopf

11.09.2009
Elektrische Signale im Gehirn kosten weniger Energie als erwartet

Die Leistungsfähigkeit des Gehirns hat seinen Preis: Sie benötigt sehr viel Energie. Wissenschaftler haben nun jedoch herausgefunden, dass elektrische Signale, die der Fortleitung von Information dienen, im Säugerhirn sehr effizient sind.

Demnach verbrauchen Nervenzellen von Säugern für diese sogenannten Aktionspotenziale ca. 3-mal weniger Energie als bisher aufgrund von klassischen Arbeiten am Tintenfisch angenommen: Während dieser pro Aktionspotenzial 4-mal mehr Energie als theoretisch notwendig umsetzt, sind es bei Säugern lediglich 1,3-mal mehr. (Science, 11. September 2009)

Das menschliche Gehirn benötigt etwa 1,5-mal so viel Energie pro Zeit wie das Herz, rund die Hälfte davon für den normalen Stoffwechsel der Nervenzellen. Von der verbleibenden Hälfte wird ein Teil zur Bildung elektrischer Signale aufgewendet, mit denen die Nervenzellen miteinander kommunizieren. Das für die Gehirnfunktion besonders bedeutungsvolle Aktionspotenzial entsteht durch den Ein- und Ausstrom von elektrisch geladenen Atomen (Ionen). Dabei strömen positiv geladene Natrium-Ionen durch Proteine in der Zellmembran (Natriumkanäle) in die Nervenzelle und laden das ursprünglich elektrisch negative Zellinnere positiv auf (Abb.). Positiv geladene Kalium-Ionen fließen durch Kaliumkanäle aus dem Zellinnern nach außen und lassen die Nervenzelle wieder negativ werden.

Zeitlicher Verlauf der Ionenströme bestimmt Energieverbrauch

Um nach einem Aktionspotenzial die ursprüngliche Ionenverteilung wieder herzustellen, müssen Natrium-Ionen unter Energieaufwand aus der Zelle hinaus und Kalium-Ionen hinein gepumpt werden. Ihr Energiebedarf hängt daher eng damit zusammen, wann wie viele Ionen ein- und ausströmen. Forscher vom Max-Planck-Institut für Hirnforschung in Frankfurt und der Universität London haben deshalb diese Ionenströme in Nervenfasern (Axonen) in der Hippocampus-Region des Rattengehirns untersucht. Diese Axone sind wie die meisten anderen in der Hirnrinde von Säugern nicht von Hilfszellen umwickelt (unmyelinisiert) und stehen im Verdacht, wegen der ungünstigen Abfolge der Ionenströme während des Aktionspotenzials sehr viel Energie zu benötigen.

Die Wissenschaftler haben nun allerdings festgestellt, dass die Ionenströme energiesparend zusammenspielen: Der Natrium-Einstrom und der ihm entgegenwirkende Kalium-Ausstrom überlappen zeitlich nur wenig. Verantwortlich dafür ist das genau abgestimmte Öffnen und Schließen der Natrium- und Kaliumkanäle. Deshalb fließt Computersimulationen zufolge nur 1,3-mal mehr Natrium in die Zelle als theoretisch notwendig. "Die Zelle müsste deutlich mehr Energie für das Zurückpumpen aufwenden, wenn viele Natrium- und Kalium-Ionen gleichzeitig fließen würden, ohne einen elektrischen Netto-Effekt zu haben. Entscheidend für einen niedrigen Energieverbrauch ist deshalb, dass der Natrium-Einstrom möglichst wieder gedrosselt wird, bevor die ausströmenden Kalium-Ionen die positivierende Wirkung der Natrium-Ionen aufheben", erklärt Henrik Alle vom Max-Planck-Institut für Hirnforschung. Abschätzungen der Forscher zufolge erfordert die Signalübertragung an den Kontakten zwischen Nervenzellen, den Synapsen, ca. 6-mal so viel Energie wie die Signalfortleitung mittels Aktionspotenzialen zu den Kontaktstellen hin.

Effizienter Umgang mit Energie begrenzt hohen Energiebedarf

"Unsere Ergebnisse zeigen, dass zumindest diese unmyelinisierten Nervenzellfortsätze von Säugetieren sehr viel effizienter Aktionspotenziale bilden als bisher angenommen. Wir schätzen es aber als sehr wahrscheinlich ein, daß unmyelinisierte Axone in der Hirnrinde generell energieeffiziente Aktionspotenziale bilden. Möglicherweise hat dies dazu beigetragen, dass sich komplexe Gehirne wie die der Säuger entwickeln konnten", vermutet Henrik Alle. Denn das menschliche Gehirn ist im Vergleich zu vielen anderen Organen ein Energiefresser: Obwohl es beim Erwachsenen nur etwa 2% des Körpergewichts ausmacht, ist es für fast 20% des Energieverbrauchs des Körpers verantwortlich. Ohne die jetzt entdeckte Effizienz wäre der Verbrauch noch höher.

Die von der Hertie-Stiftung geförderte Studie verändert nicht nur die Sicht der Wissenschaftler auf Zusammenhänge von Energie und Informationsverarbeitung im Gehirn und auf Modelle von Ionenkanälen, sie hat auch praktische Bedeutung: Mit ihrer Hilfe lassen sich Signale bildgebender Verfahren, die auf aktivitätsabhängigen Änderungen des lokalen Energieverbrauchs im Gehirn basieren wie die funktionelle Kernspintomografie künftig genauer interpretieren.

Originalveröffentlichung:

Henrik Alle, Arnd Roth, Jörg R. P. Geiger
Energy-Efficient Action Potentials in Hippocampal Mossy Fibers
Science, 11. September 2009
Weitere Informationen erhalten Sie von:
Dr. Henrik Alle
Max-Planck-Institut für Hirnforschung, Frankfurt/Main
Tel.: +49 (0)69 967 69-751
E-Mail: alle@mpih-frankfurt.mpg.de

Dr. Harald Rösch | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise