Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Energiepflanzen sind unterschiedlich klimafreundlich

19.04.2011
Fachtagung in Braunschweig gibt neue Impulse

In Sachen Bioenergie kann Deutschland noch viel von seinen Nachbarn lernen. Das wurde jetzt auf einer europäischen Forschertagung in Braunschweig deutlich, die vom Johann Heinrich von Thünen-Institut (vTI) ausgerichtet wurde. Eine besonders klimaverträgliche Nutzung von Energiepflanzen machen uns die britischen, skandinavischen und baltischen Staaten vor.

Welchen Beitrag kann die Landwirtschaft zum Klimaschutz in Europa leisten? Mit dieser Frage befassten sich mehr als 100 Wissenschaftler bei der Jahrestagung des europäischen Forschungprojekts „GHG-Europe – Treibhausgas-Management in europäischen Landnutzungssystemen“. Das Johann Heinrich von Thünen-Institut (vTI) in Braunschweig koordiniert das Projekt und richtete die Tagung aus.

Im Rahmen des GHG-Europe-Projekts haben Wissenschaftler erstmals die Treibhausgasbilanzen beim Anbau unterschiedlicher Bioenergiepflanzen aus ganz Europa ermittelt. Bereits mit kurzen Messreihen konnten sie aussagekräftige Ergebnisse ableiten, da sich an vielen verschiedenen Standorten die gleichen Trends zeigten.

Bioenergie wird aus pflanzlicher Biomasse gewonnen, zum Beispiel aus Holz und Ackerfrüchten, aber auch aus Reststoffen der landwirtschaftlichen Produktion wie Gülle. In Deutschland werden aus landwirtschaftlicher Biomasse hauptsächlich Biokraftstoffe (E10 oder Biodiesel) und Biogas hergestellt. Die „Bioenergie-Platzhirsche“ auf deutschen Äckern sind Raps und Mais, alternative Energiepflanzen wie Chinagras oder Pappeln haben in Deutschland bisher kaum Fuß fassen können. Landläufig gilt Bioenergie als CO2-neutral, doch das ist bei näherem Hinsehen nicht ganz richtig. Bei der Produktion können erhebliche Mengen Treibhausgase entstehen. Daher steht die Frage im Raum: Welche Bioenergiepflanzen sind am effektivsten für den Klimaschutz?

Die auf der Tagung in Braunschweig präsentierten Messdaten bekräftigten, was seit Jahrzehnten von Fachkreisen gemahnt wird: Herkömmliche Bioenergieträger wie Biodiesel, Bioethanol und Biogas aus Mais und Raps sind erheblich energie- und nährstoffhungriger als schnellwüchsige mehrjährige Gräser und Gehölze. Dies liegt unter anderem am hohen Stickstoffbedarf von Mais und Raps; die Herstellung von Stickstoffdüngern ist ein energieaufwändiger Prozess. Auch setzen die Ackerböden nach der Düngung Lachgas frei – ein Gas, fast 300-mal so klimaschädlich wie Kohlendioxid. Damit wird ein Teil des positiven Effekts von herkömmlicher Bioenergie wieder zunichte gemacht. Mehrjährige Gräser und Hölzer hingegen können im Winter geerntet werden, wenn die meisten Nährstoffe in den Pflanzenwurzeln gespeichert sind und im nächsten Jahr wieder für das Wachstum zur Verfügung stehen. Pappelplantagen, so zeigten die Wissenschaftler, emittierten 40 bis 99 Prozent weniger Lachgas als Mais- oder Rapsfelder – bei vergleichbaren Energieerträgen. Darüber hinaus konnte unter Weiden und Pappeln ein deutlicher Humusaufbau über mehrere Jahre festgestellt werden. Diese Kohlenstoff-Festlegung (Sequestrierung) im Boden trägt zusätzlich zum Klimaschutz bei.

Mehrjährige Gräser und Bäume eignen sich für nasse und nährstoffarme Flächen und für eine klimafreundliche Form der Moornutzung, dort wo bisher Maisäcker für Biogas den Klimawandel anheizen.

Schnellwüchsige Pflanzen wie Miscanthus (Chinaschilf), Rohrglanzgras und Weiden werden bereits auf mehreren zehntausenden Hektar Fläche auf den britischen Inseln, in Skandinavien und den baltischen Staaten kommerziell angebaut und in Kraftwerken zur Wärme- und Stromproduktion beigemischt. Dr. Axel Don vom vTI-Institut für Agrarrelevante Klimaforschung, Koordinator des GHG-Europe-Projekts, betont: „Während die aus Sicht des Klimaschutzes effizientesten mehrjährigen Energiepflanzen in Deutschland noch erforscht werden, sind sie in vielen Nachbarländern längst praxisreif und Nummer eins der Bioenergieproduktion. Die deutsche Bioenergieförderung hat die effizientesten Klimaschutzwege bisher vernachlässigt.“

Weitere Informationen zum GHG-Europe-Projekt finden sich im Internet unter:
http://www.ghg-europe.eu (in englisch).

Dr. Michael Welling | vTI
Weitere Informationen:
http://www.vti.bund.de
http://www.ghg-europe.eu

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen
22.06.2017 | Heinrich-Heine-Universität Düsseldorf

nachricht Im Mikrokosmos wird es bunt: 124 Farben dank RGB-Technologie
22.06.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie