Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Energie aus "grünem Schleim"

07.08.2008
Forscher der WWU wollen aus Mikroalgen Wasserstoff gewinnen

"Grün und schleimig" - das ist die erste Assoziation vieler Menschen bei dem Gedanken an Algen. Die Pflanzen haben keinen guten Ruf. Doch besitzen sie eine Menge interessanter Eigenschaften.

So werden Algen in letzter Zeit als alternative Energielieferanten diskutiert, aus denen zum Beispiel Biodiesel und auch Wasserstoff gewonnen werden kann. Wissenschaftler, darunter Forscher der Universität Münster, wollen Algen nun so verändern, dass sie mehr Wasserstoff produzieren. Dann könnten die Algen umweltfreundliche, wirtschaftliche Energielieferanten werden.

Zu dem Projekt "Biowasserstoffproduktion in Mikroalgen" haben sich vier Forschergruppen zusammengeschlossen: Neben den münsterschen Forschern um Prof. Dr. Michael Hippler vom Institut für Biochemie und Biotechnologie der Pflanzen sind Forscher vom Max-Planck-Institut für Molekulare Pflanzenphysiologie in Golm (Potsdam), der Universität Karlsruhe (TH) sowie - als Koordinatoren - der Universität Bielefeld beteiligt. Das Projekt wird für die nächsten drei Jahre vom Bundesministerium für Bildung und Forschung mit insgesamt 1,8 Millionen Euro unterstützt; rund 400.000 Euro davon gehen an die Forscher der WWU.

Wasserstoff gilt als eine umweltfreundliche Energiequelle der Zukunft, zum Beispiel in der Automobilindustrie - vorausgesetzt, der Wasserstoff wird auch mit umweltschonenden Verfahren gewonnen. Die Forscher wollen daher aus einzelligen Grünalgen industrietaugliche Wasserstofflieferanten entwickeln, die den Wasserstoff ohne negative Folgen für die Umwelt liefern. Die winzigen Algen produzieren unter bestimmten Bedingungen Wasserstoff, beispielsweise wenn Sauerstoff fehlt oder Anpassung an Schwefelmangel nötig ist. Dann wird der Stoffwechsel der Photosynthese umgestellt, und bei Bestrahlung mit Sonnenlicht stellen die Algen Wasserstoff her. Bei herkömmlichen Grünalgen werden allerdings nur 0,1 Prozent der einfallenden "Lichtteilchen" zu Wasserstoffmolekülen umgesetzt - aus ökonomischer Sicht zu wenig. "Wenn wir die Rate auf sieben bis zehn Prozent steigern könnten, dann wäre die Wasserstoffproduktion aus Grünalgen auch kommerziell interessant", so Prof. Hippler.

Um die Wasserstoffproduktion zu erhöhen, verfolgen die Forscher mehrere Ansätze. Ein Ansatzpunkt ist eine bereits existierende Zuchtlinie der von ihnen erforschten Grünalge. Die Algen dieser Linie tragen eine genetische Veränderung, die eine erhöhte Wasserstoffproduktion mit sich bringt. Allerdings ist auch die Wasserstoffproduktion dieser Algensorte noch weit vom gewünschten Wert entfernt.

Durch einen Vergleich der speziellen Zuchtlinie mit der "normalen" Alge wollen die Forscher herausfinden, welche Stoffwechselwege für den Unterschied in der Wasserstoff-Produktion verantwortlich sind - welche Gene in den Algen aktiv sind und welche Proteine und Stoffwechselprodukte entstehen. "Wenn wir die genauen Mechanismen kennen, hoffen wir, durch gezielte genetische Veränderungen neue Generationen dieser Zuchtlinie zu erhalten, die dann eine noch effizientere Wasserstoffproduktion aufweisen", erklärt Prof. Hippler.

Zusätzlich suchen die Forscher nach weiteren zufällig entstandenen, bislang unbekannten Algenlinien, die ebenfalls mehr Wasserstoff produzieren und die Forscher auf ihrer Suche nach dem idealen Wasserstofflieferanten einen Schritt voran bringen.

Ein weiterer Ansatz ist die Verbesserung der Fermenteranlagen - der Wassertanks, in denen die Algen unter definierten Wachstumsbedingungen den gewünschten Wasserstoff produzieren. Ein Knackpunkt beim Bau der Fermenter ist die Beleuchtung: Damit sie Wasserstoff produzieren, müssen auch die Algen im Inneren der Tanks ausreichend Licht bekommen. Bislang werden die Algen künstlich beleuchtet. Damit die Energiebilanz am Ende stimmt, wollen die Forscher "Außenreaktoren" entwickeln, die allein mit Sonnenlicht auskommen. Zudem sollen die Tanks deutlich größer werden. "Unser Team will den Sprung von 25-Liter-Fermentern auf 250-Liter-Fermenter schaffen", so Prof. Hippler. Federführend bei diesem technischen Teilprojekt sind die Forscher aus Karlsruhe.

Das Mikroalgen-Projekt ist mit der Arbeit des internationalen Konsortiums "Solar Biofuels" verknüpft, das die Algen neben der Wasserstoffproduktion auch zur Produktion von Biodiesel und Biomethan nutzbar machen will. Prof. Hippler, der dem Konsortium angehört, lobt die Vorteile, die die kleinen Algen bieten: "Die Mikroalgen wären als Energielieferanten besonders gut geeignet. Sie benötigen kein fruchtbares Land, im Gegensatz zu Nutzpflanzen, die zur Herstellung von Biokraftstoffen angebaut werden, und sie treten nicht in Konkurrenz mit der Nahrungsmittelproduktion. Zudem verbrauchen sie wesentlich weniger Wasser - das ist gerade in trockenen Gebieten extrem wichtig."

Link: AG Hippler
(http://www.uni-muenster.de/hippler/index.php)

| Uni Münster
Weitere Informationen:
http://www.uni-muenster.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Salmonellen als Medikament gegen Tumore
23.10.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Add-ons: Was Computerprogramme und Proteine gemeinsam haben
23.10.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie