Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Energie des Lebens auf der Spur

18.06.2010
Freiburger Forscher entschlüsseln den Zusammenbau der Generatoren in den Kraftwerken der Zelle

Wissenschaftler des Instituts für Biochemie und Molekularbiologie und des Sonderforschungsbereichs 746 der Universität Freiburg haben einen neuen Mechanismus entdeckt, der für den Aufbau und das Wachstum von Mitochondrien, den so genannten Kraftwerken der Zelle, von zentraler Bedeutung ist.

Diese Organellen machen in der Nahrung gespeicherte Energie für die Zelle nutzbar. Die Generatoren in den zellulären Kraftwerken sind biologische Membranen, die sich im Inneren der Mitochondrien befinden. Schon kleinste Fehler beim Aufbau der inneren Mitochondrien-Membran können zu schwerwiegenden Stoffwechselstörungen führen, die vor allem die energiehungrigen Muskel- und Nervenzellen in Mitleidenschaft ziehen.

Damit die zellulären Generatoren funktionieren können, müssen zahlreiche hoch spezialisierte Membranproteine in die innere Mitochondrienmembran eingebaut werden. Diese Proteine werden überwiegend außerhalb der Organellen synthetisiert und anschließend mit Hilfe von Protein-Translokasen importiert. Fundamentale Prozesse wie dieser laufen in allen Organismen, vom Einzeller bis zum Menschen, nach denselben Prinzipien ab. Daher konnten die Wissenschaftler für ihre Studie, die soeben in der renommierten Fachzeitschrift „Current Biology“ veröffentlicht wurde, Mitochondrien der Bäckerhefe als Modelsystem verwenden.

Die Freiburger Forscher untersuchten die Insertion einer Familie von Membranproteinen, die ABC Transporter genannt werden und von großem pharmakologischem Interesse sind. Dabei machten sie die überraschende Entdeckung, dass manche Segmente der Transporter von der Insertionsmaschinerie offenbar zunächst überlesen und vollständig über die Membran transportiert werden. „Diese Fehler in der Membraninsertion werden anschließend von einer anderen, stammesgeschichtlich sehr alten Translokase repariert“, sagt Maria Bohnert, Doktorandin und Stipendiatin des Boehringer-Ingelheim-Fonds. Somit konnte zum ersten Mal gezeigt werden, dass mindestens zwei verschiedene Protein-Translokasen bei der Insertion kompliziert gebauter Proteine in die innere Mitochondrienmembran eng zusammen arbeiten.

Mit der Aufklärung dieses gekoppelten Mechanismus der Membraninsertion konnten Projektleiter Dr. Martin van der Laan und sein Team ein kontrovers diskutiertes wissenschaftliches Problem lösen und einen wichtigen Beitrag zum Verständnis von Aufbau und Funktion der zellulären Kraftwerke leisten. Die gewonnenen Einsichten können helfen die Mechanismen von Krankheiten aufzuklären, die durch Defekte in der Biogenese der Mitochondrien entstehen.

Veröffentlichung:
Current Biology: Cooperation of Stop-Transfer and Conservative Sorting Mechanims in Mitochondrial Protein Transport.
Maria Bohnert, Peter Rehling, Bernard Guiard, Johannes M. Herrmann, Nikolaus Pfanner und Martin van der Laan.

Published online: 17. Juni 2010.

Kontakt:
Dr. Martin van der Laan
Institut für Biochemie und Molekularbiologie
Sonderforschungsbereich 746, Universität Freiburg
Tel.: 0761/203-5270
Fax: 0761/203-5261
E-Mail: martin.van.der.laan@biochemie.uni-freiburg.de

Rudolf-Werner Dreier | idw
Weitere Informationen:
http://www.uni-freiburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics