Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie die Enden der Chromosomen die Zellalterung beeinflussen

11.09.2013
Heidelberger Wissenschaftler untersuchen Funktion der Telomere in zellulären Alterungsprozessen

Mit Untersuchungen zu den Prozessen, die sich an den Enden von Chromosomen abspielen, haben Heidelberger Wissenschaftler einen wichtigen Mechanismus aufgedeckt, der zu einem besseren Verständnis der Zellalterung führt. Im Mittelpunkt steht dabei die Länge der Chromosomenenden, der sogenannten Telomere, die sich experimentell beeinflussen lässt.

Die Arbeiten, die am Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) durchgeführt wurden, eröffnen neue Ansätze für die Entwicklung von Therapien bei Gewebeverlusten und Organversagen, die im Zusammenhang mit der Alterung von Zellen, der Seneszenz, stehen. Die vor Kurzem in der Zeitschrift „Nature Structural & Molecular Biology“ veröffentlichten Forschungsergebnisse könnten auch in der Krebsbehandlung von Bedeutung sein.

Jede Zelle enthält einen Chromosomensatz, in dem ein Großteil der Erbinformation in Form von DNA gespeichert ist. Diese Information muss geschützt werden, damit die ordnungsgemäße Funktion der Zelle erhalten bleibt. Dabei übernehmen die Enden der Chromosomen, die Telomere, eine wichtige Rolle und schützen die chromosomale DNA vor Abbau. „Man kann sich Telomere wie die Plastikkappen an Schnürsenkeln vorstellen. Ohne diese Kappen fransen die Enden aus, und schließlich kann der ganze Schnürsenkel seine Funktion nicht mehr erfüllen“, erklärt Dr. Brian Luke. Seine Forschergruppe am ZMBH beschäftigt sich in erster Linie mit der Frage, auf welche Weise Telomere der DNA Schutz bieten.

In der Wissenschaft ist bekannt, dass Telomere mit jeder Zellteilung kürzer werden und schließlich so weit verkürzt sind, dass sie die Chromosomen nicht mehr schützen können. Die ungeschützten Chromosomenenden senden Signale aus, die dafür sorgen, dass sich die Zelle nicht mehr teilt. Dieser Zustand wird als „Seneszenz“ bezeichnet. Mit fortschreitendem Alter gibt es immer mehr seneszente Zellen, die den Verlust von Gewebe und Organversagen begünstigen können. „Bei bestimmten Krankheiten haben die Patienten von Geburt an kurze Telomere und sind daher oft schon frühzeitig starken Gewebeverlusten und Funktionsstörungen von Organen ausgesetzt“, erläutert der Heidelberger Wissenschaftler.

Die Forschergruppe um Dr. Luke hat nun herausgefunden, dass das An- oder Abschalten der Transkription an den Telomeren erhebliche Auswirkungen auf deren Länge haben kann. Bei der Transkription handelt es sich um den Vorgang, bei dem Informationen der DNA in RNA-Moleküle umgeschrieben werden. Er konnte erst vor kurzem bei Telomeren nachgewiesen werden, aber die funktionelle Bedeutung dieser Entdeckung blieb ungeklärt. Die Molekularbiologen Bettina Balk und André Maicher konnten jetzt zeigen, dass die RNA selbst eine Schlüsselrolle bei der Regulierung der Telomerlänge spielt – und zwar besonders dann, wenn sie an die Telomer-DNA bindet und ein sogenanntes „RNA-DNA-Hybrid-Molekül“ bildet.

„Experimentell haben wir die Anzahl der RNA-DNA-Hybride an den Chromosomenenden beeinflusst. So können wir das Tempo der zellulären Seneszenz direkt erhöhen oder verringern, indem wir die Länge des Telomers verändern“, erläutert Bettina Balk. Nach den Worten von André Maicher könnte dies der erste Schritt hin zu Telomer-basierten Behandlungsmethoden bei Gewebeverlusten oder Organversagen sein. Im Falle von Krankheiten bleibt es zu überprüfen, ob die Veränderung der Transkriptionsraten von Telomeren tatsächlich den Gesundheitszustand verbessern kann. Von Bedeutung ist dieser Ansatz auch bei Krebszellen, die nicht altern und quasi unsterblich sind. „Die Regulierung der Länge von Telomeren über die Beinflussung der Transkription könnte daher auch in der Krebstherapie eine Anwendung finden“, betont Dr. Luke.

Die Nachwuchsforschergruppe von Dr. Luke ist Mitglied des Netzwerks AlternsfoRschung (NAR) an der Universität Heidelberg und wird finanziell von der Baden-Württemberg Stiftung unterstützt. Weitere Fördermittel werden von der Deutschen Forschungsgemeinschaft im Rahmen des Sonderforschungsbereichs „Zelluläre Qualitätskontrolle und Schadensbegrenzung“ (SFB 1036) der Ruperto Carola bereit gestellt.

Originalveröffentlichung:
B. Balk, A. Maicher, M. Dees, J. Klermund, S. Luke-Glaser, K. Bender & B. Luke: Telomeric RNA-DNA hybrids affect telomere length dynamics and senescence; Nat. Struct. Mol. Biol. (8 September 2013), DOI: 10.1038/nsmb.2662
Kontakt:
Dr. Brian Luke
Zentrum für Molekulare Biologie der Universität Heidelberg
Telefon (06221) 54-6897, b.luke@zmbh.uni-heidelberg.de
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten