Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronenstrahlen: von Strahlenschäden zur Kontrolle chemischer Synthesen

29.01.2013
Chemikern der Universität Bremen gelingt kontrollierte chemische Synthese durch Elektronenstrahlen.

Röntgenstrahlung kann lebende Organismen schädigen, weil sie deren molekulare Bausteine zersetzt. Genauso verhält es sich im technischen Bereich mit Elektronenstrahlen, die oft zur Untersuchung der Oberfläche von Materialien eingesetzt werden, so zum Beispiel bei der Elektronenmikroskopie.

Diese Strahlenschäden erschweren oft die Anwendung solcher Methoden, da sie die Probe während der Untersuchung verändern, wobei sich diese zerstörerische Wirkung aber auch zum Einbrennen feiner Strukturen an Oberflächen nutzen lässt. Dass Elektronenstrahlen allerdings auch ein Werkzeug sind, um neue Materialien gezielt aufzubauen, haben jetzt Forscherinnen und Forscher am Institut für Angewandte und Physikalische Chemie der Universität Bremen herausgefunden. Die Arbeitsgruppe von Professorin Petra Swiderek konnte nachweisen, dass sich auch chemische Synthesen, also der Aufbau von Molekülen, durch Elektronenstrahlen auslösen und kontrollieren lassen.

Elektronenstrahlen können damit - ähnlich wie Laser - eingesetzt werden, um beispielsweise gezielt die Oberfläche von Materialien chemisch zu verändern. Besonders interessant wird eine solche Technik, wenn sich die Verknüpfung zweier Ausgangsmoleküle so steuern lässt, dass alle enthaltenen Atome auch in das Produkt eingebaut werden. Im Sinne einer Atom-effizienten Synthese wird also kein Material verschwendet.

Wie kommt diese Synthese zustande?

Eine solche Synthese gelingt mit Elektronenstrahlen, wenn die Elektronen eine so niedrige Energie haben, dass sie gerade in der Lage sind, ein weiteres Elektron aus einem Molekül herauszuschlagen, aber das Molekül dabei noch nicht weiter zerfällt. Dann entsteht ein positiv geladenes Molekülion, das aufgrund seiner Ladung stark anziehend auf Reaktionspartner wirkt. Damit wird eine Synthese eingeleitet, wie sie sonst nur unter Zuhilfenahme spezieller Katalysatoren zu erzielen ist. Die Arbeitsgruppe Swiderek konnte kürzlich erste Beispiele solcher durch Elektronenstrahlen kontrollierter Synthesen nicht nur nachweisen, sondern auch nutzen. Die Bremer Chemiker knüpften Ammoniak-Moleküle an eine dünne Kohlenwasserstoff-Schicht an und konnten so die Oberfläche mit neuen Funktionalitäten ausstatten.

Die Arbeiten auf diesem Gebiet, über die bereits in Fachzeitschriften berichtet worden ist, werden seit einiger Zeit durch die DFG gefördert. Nun wurde erneut ein Projekt im Umfang von fast 250.000 Euro für das Institut für Angewandte und Physikalische Chemie bewilligt. Das Vorhaben beschäftigt sich damit, die chemische Synthese durch Einsatz von Elektronenstrahlen in größerem Umfang zu untersuchen und so weitere Substanzklassen auf diesem Weg zugänglich zu machen. Derartige Synthesen sind nicht nur für die Funktionalisierung von Oberflächen von Bedeutung. Sie können möglicherweise auch zur Erklärung der strahleninduzierten Bildung von größeren Molekülen beitragen, wie sie beispielsweise im Zusammenhang mit der Astrochemie, das heißt der Entstehung komplexerer Moleküle in kosmischem Eis, vermutet wird.

Weitere Informationen:

Universität Bremen
Fachbereich Biologie / Chemie
Institut für Angewandte und Physikalische Chemie
Prof. Dr. Petra Swiderek
Tel. 0421 218 63200
E-Mail: swiderek@uni-bremen.de

Eberhard Scholz | idw
Weitere Informationen:
http://www.uni-bremen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften