Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronenblitze erhellen Moleküldynamik

11.07.2014

Göttinger Forscher beobachten die ultraschnelle Dynamik an Oberflächen auf der atomaren Skala

In der mikroskopischen Welt von Atomen und Molekülen läuft vieles im Bereich von Femtosekunden und Pikosekunden ab, also Billiardsteln und Billionsteln einer Sekunde. Um einen direkten Blick auf die Dynamik im Mikrokosmos werfen zu können, nutzen Forscher extrem kurze Röntgen- oder Elektronenblitze. So können schnelle Bewegungen von Atomen und Molekülen in einem Moment festgehalten werden und es werden feinste Unterschiede in der Anordnung und Orientierung atomarer Strukturen sichtbar.


Die ultrakurzen Elektronenpulse für die Untersuchung molekularer Filme werden mit Laserlicht am Ende einer nanoskopisch kleinen Metallspitze erzeugt.

Grafik: Universität Göttingen


Graphische Darstellung der Polymerstränge auf einer wabenförmigen Graphenstruktur.

Grafik: Universität Göttingen

Physiker und Chemiker der Universität Göttingen haben unter Beteiligung von Forschern des Göttinger Max-Planck-Instituts (MPI) für biophysikalische Chemie ein neues Verfahren entwickelt, die Dynamik einzelner atomarer und molekularer Lagen zu untersuchen. Die Ergebnisse sind in der renommierten Fachzeitschrift Science erschienen.

Die Arbeitsgruppe um Prof. Dr. Claus Ropers und Dr. Sascha Schäfer von der Fakultät für Physik hat die neue Technik entwickelt, die auf der Beugung ultrakurzer Elektronenblitze an Oberflächen und dünnen Filmen basiert. „Das Besondere an unseren Experimenten ist, dass wir ultrakurze Elektronenpulse bei vergleichsweise niedriger Energie erzeugen konnten.

Damit können wir Schichten analysieren, die nicht dicker als ein einziges Molekül sind“, erklärt Max Gulde, Doktorand und Erstautor der Veröffentlichung. „Außerdem haben Elektronen mit niedriger Energie den Vorteil, dass man mit ihnen auch weiche organische Materialien untersuchen kann, ohne sie allzu schnell zu zerstören.“

Die erste mit der neuen Technik analysierte Probe besteht aus einer Polymer-Graphen-Doppelschicht, die in enger Zusammenarbeit mit Prof. Dr. Alec Wodtke und Dr. Hak-Ki Yu vom MPI für biophysikalische Chemie hergestellt wurde. Graphen ist ein Material mit außergewöhnlichen mechanischen und elektronischen Eigenschaften, für dessen Herstellung und Untersuchung der Nobelpreis für Physik im Jahr 2010 vergeben wurde.

Es besteht aus einer einzelnen Lage von Kohlenstoffatomen, angeordnet in einer Honigwabenstruktur. Die nachträglich auf das Graphen aufgebrachte Polymerschicht hat sich in einer Art Streifenmuster auf das Graphen gelegt. Die Forscher haben die strukturelle Reaktion des Polymers beobachtet, nachdem die Doppelschicht mit einem kurzen Energiepuls angeregt wurde. Insbesondere konnte hierbei quantitativ abgebildet werden, wie schnell durch den Energieübertrag vom Graphen auf das Polymer die Ordnung des molekularen Films verlorengeht und nach Abkühlen wieder entsteht.

„Hybridstrukturen auf der Basis von Graphen sind besonders interessant für zukünftige Anwendungen zum Beispiel in der Nanoelektronik, da mit ihnen eine ganz neue Variabilität der Materialeigenschaften erreicht werden kann. Die Beobachtung der Ultrakurzzeitdynamik in solchen Systemen gibt uns die Möglichkeit, Kopplungen und Energietransferprozesse auf atomarer Skala zu untersuchen“, erläutert Prof. Ropers. Das Verfahren ist auf viele andere Probleme in der Oberflächenphysik anwendbar.

„Die Ergebnisse sind das Resultat der produktiven Kooperation sowohl zwischen der Universität und dem MPI als auch zwischen der Fakultät für Physik und der Fakultät für Chemie“, sagt Prof. Wodtke, der mit einer Alexander von Humboldt-Professur an der Fakultät für Chemie unter anderem neue Herstellungstechniken hochqualitativen Graphens erforscht. „Um gemeinsam genau solchen Fragestellungen nachzugehen, haben wir in einer etwa 30-köpfigen Gruppe von Wissenschaftlern vor kurzem einen neuen Sonderforschungsbereich auf den Weg gebracht.“

Kontaktadressen:
Prof. Dr. Claus Ropers
Georg-August-Universität Göttingen
Fakultät für Physik – IV. Physikalisches Institut
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon (0551) 39-4549, E-Mail: cropers@gwdg.de
Internet: http://www.uni-goettingen.de/de/91116.html

Prof. Dr. Alec M. Wodtke
Max-Planck-Institut für biophysikalische Chemie
Abteilung Dynamik an Oberflächen
Am Faßberg 11, 37077 Göttingen
Telefon (0551) 201-1263
E-Mail: alec.wodtke@mpibpc.mpg.de
Internet: http://www.mpibpc.mpg.de/de/wodtke

Thomas Richter | Georg-August-Universität Göttingen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten