Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektro-Signale in der Wurzelspitze der Pflanzen: Forscher weisen Aktionspozentiale nach

17.02.2009
Lange Zeit herrschte unter Botanikern Einigkeit, dass Pflanzenzellen ausschließlich mittels chemischer Signale kommunizieren.

Neuere Studien stellen dieses Paradigma jedoch zunehmend in Frage. Der jüngste Anhaltspunkt stammt von Forschern der Universitäten Florenz und Bonn: Sie konnten in der Wurzelspitze von Mais spontan auftretende elektrische Signale nachweisen, die von Zelle zu Zelle weiter geleitet wurden.

In vielerlei Hinsicht ähneln diese Aktionspotenziale denen niederer Tiere. Die Ergebnisse der Studie erscheinen heute in der Online Early Edition der Zeitschrift PNAS (doi: 10.1073/pnas.0804640106).

Die Forscher spekulieren, dass die Wurzel auf diese Weise Informationen über ihre Umgebung wahrnimmt und weiter gibt. Diese könnten dann beispielsweise an anderer Stelle in Wachstumssignale umgesetzt werden. Die Wurzelspitze kann so beispielsweise auf der Suche nach Wasser und Nährstoffen sensorische Information wahrnehmen und bearbeiten. Sie kann aber auch schnell auf toxische Substanzen im Boden reagieren, indem sie in eine andere Richtung wächst.

Dass Pflanzen Aktionspotenziale bilden, wusste vor über 130 Jahren bereits Charles Darwin. Nach der Entdeckung der so genannten "Pflanzenhormone" im ersten Drittel des 20. Jahrhunderts konzentrierten sich die Botaniker jedoch mehr und mehr auf die chemischen Signalwege. Die Elektrophysiologen unter den Pflanzenforschern fristen seitdem allenfalls ein Nischendasein.

Signalgeschwindigkeit wie bei niederen Tieren

Das könnte sich aber ändern: In jüngster Zeit häufen sich nämlich die Berichte, dass Pflanzen tatsächlich zu elektrischer Kommunikation fähig sind. In dieser Hinsicht scheinen sie sehr viel mehr den niederen Tieren zu ähneln als bislang angenommen. Die aktuelle Publikation schlägt in dieselbe Kerbe: "Wir haben nachgewiesen, dass in der Wurzelspitze von Mais immer wieder spontane elektrische Entladungen stattfinden", erklärt Dr. František Baluška von der Universität Bonn. "Diese Aktionspotenziale werden von Zelle zu Zelle weiter geleitet, und zwar mit einer ähnlichen Geschwindigkeit wie bei Quallen oder manchen Würmern."

Außerdem beobachtete das deutsch-italienische Team, dass die Zellen ihre elektrische Aktivität synchronisieren: Es gab Phasen, in denen an verschiedenen Stellen der Wurzelspitze gleichzeitig Aktionspotenziale entstanden. Danach folgte eine mehrsekündige wurzelweite Funkstille. "Wir können nicht sagen, wozu das dient", gibt Baluška zu. "Die Spekulation liegt aber nahe, dass die Zellen auf diese Weise ihr Verhalten koordinieren. So weiß man, dass bestimmte Transportvorgänge in der Wurzel oszillieren, und zwar zellübergreifend. Dafür könnten die elektrischen Signale verantwortlich sein."

Hormone sind zu langsam

Der Botaniker ist sicher, dass die Bedeutung der elektrischen Signalwege in der Wurzelspitze bislang völlig unterschätzt wurde. "Die Kommunikation mittels Aktionspotenzialen läuft viel schneller als die mittels Hormonen", sagt er. "Das war auch lange das Argument mancher Kritiker: So einen schnellen Signalweg braucht eine Pflanze gar nicht. Wir wissen heute jedoch, dass die Wurzelspitze kontinuierlich rund 20 Bodenparameter scannt. Wenn sie beispielsweise auf Giftstoffe stößt, ändert die Wurzel blitzschnell ihre Wuchsrichtung."

Besonders flott reagieren Wurzeln auf Änderungen ihrer Lage. Die Maiswurzel verfügt dazu über Schwerkraftsensoren in ihrer Wurzelhaube. Deren Signale führen zu einer entsprechend geänderten Wuchsrichtung. Erste Reaktionen lassen sich mit empfindlichen Messinstrumenten bereits nach zwei Sekunden nachweisen. "Die Wachstumszone liegt aber relativ weit von dem Schwerkraftsensor in der Wurzelhaube entfernt", betont Baluška. "Eine Signalübermittlung mittels chemischer Botenstoffe wäre viel zu langsam, um bereits nach wenigen Sekunden messbare Effekte zu erzeugen. Die hohe Geschwindigkeit der Signalübertragung spricht in diesem Fall eindeutig für elektrische Signalwege."

Spatiotemporal dynamics of the electrical network activity in the root apex: A multielectrode array (MEA) study. E. Masi, M. Ciszak, G. Stefano, L. Renna, E. Azzarello, C. Pandolfi, S. Mugnai, F. Baluška, F. T. Arecchi, and S. Mancuso. PNAS Online Early Edition, 17.2.2009

Kontakt:
Dr. František Baluška
Abteilung für Pflanzenzellbiologie
Institut für Zelluläre und Molekulare Botanik
Universität Bonn
Telefon: 0228/73-4761
E-Mail: baluska@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de
http://ds9.botanik.uni-bonn.de/zellbio/AG-Baluska-Volkmann/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung
26.04.2017 | Universität Ulm

nachricht Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt
26.04.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung

26.04.2017 | Biowissenschaften Chemie

Naturkatastrophen kosten Winzer jährlich Milliarden

26.04.2017 | Interdisziplinäre Forschung

Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt

26.04.2017 | Biowissenschaften Chemie