Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektrische Signale verstärken schwache Duftreize in unseren Nasen

31.01.2011
Wissenschaftler der Universität Heidelberg entschlüsseln Funktionsweise der Riechzellen

Das Riechsystem des Menschen besitzt einen speziellen elektrischen Verstärkungsmechanismus, der die Riechzellen der Nase dazu befähigt, auch auf extrem schwache Reize zu reagieren. Wie dieser Mechanismus funktioniert, haben Wissenschaftler der Universität Heidelberg unter Leitung des Physiologen Prof. Dr. Stephan Frings entschlüsselt.

Eine entscheidende Rolle spielen dabei Chloridionen, die in den sogenannten Sinneshärchen der Nase gespeichert werden. Sobald Duftstoffe auf die Duftstoffrezeptoren der Sinneshärchen treffen, werden die Chloridionen schlagartig freigesetzt. Dieser Vorgang erzeugt starke elektrische Signale, die die entsprechende Geruchsinformation an das Gehirn weiterleiten.

Unsere Nase nimmt mit der Atemluft unablässig Duftstoffe auf. Das Riechsystem hat es dabei mit einer ungeheuren Vielfalt chemischer Verbindungen zu tun: Die Luft eines Zimmers, in dem eine Kaffeemaschine arbeitet, Pflanzen auf der Fensterbank stehen und Menschen aus- und eingehen, enthält viele Tausend unterschiedlicher Duftstoffe. Für das Riechsystem ist dieses Chaos kein Problem. Es identifiziert mit großer Zuverlässigkeit das Kaffeearoma, obwohl allein dies aus über 800 verschiedenen Duftstoffen zusammengesetzt ist. Die Riechzellen in der Nase sind dazu mit Duftstoffrezeptoren ausgestattet. Dabei handelt es sich um Proteine, die von den Riechzellen auf feinen Sinneshärchen in die Atemluft gehalten werden.

Bei der Erforschung der Riechzellen und ihrer Rezeptoren gab es eine bisher nicht gelöste Frage. Die Konzentration einzelner Duftstoffe in der Nase, also die Anzahl von Molekülen eines bestimmten Duftstoffs pro Kubikzentimeter Atemluft, ist sehr gering. Zugleich haben sich die Duftstoffrezeptoren als recht unempfindlich erwiesen. Sie reagieren nur äußerst schwach auf die niedrigen Duftstoffkonzentrationen. Wie kann es also sein, dass die Schlüsselfunktion unseres hochempfindlichen Riechsystems ausgerechnet von Rezeptoren mit geringer Empfindlichkeit ausgeübt wird? Die Lösung ist der elektrische Verstärkungsmechanismus für die Riechzellen, den Prof. Frings und sein Team am Centre for Organismal Studies der Universität Heidelberg entschlüsselt haben.

Die Sinneshärchen der Riechzellen bereiten sich in besonderer Weise auf ihren Einsatz vor: Ein Proteinkomplex pumpt Chloridionen in das Innere der Sinneshärchen, so dass diese zu gut gefüllten Chloridspeichern werden. Bei einem Duftreiz kommt ein weiteres Protein zum Einsatz: ein Chloridkanal, von dem die Sinneshärchen viele Kopien in ihrer Außenmembran besitzen. Diese Chloridkanäle bleiben solange geschlossen, wie die Riechzelle ruht. Beim Duftreiz aber löst die schwache Reaktion der Duftstoffrezeptoren eine schlagartige Öffnung aller Kanäle aus. Der Ausstrom negativ geladener Chloridionen verursacht eine Ladungsumkehrung der Riechzelle. Dadurch entstehen starke elektrische Signale, die mit den Geruchsinformationen zum Gehirn geleitet werden.

Weitere Informationen sind im Internet unter
http://www.molekulare-physiologie.de abrufbar.
Originalveröffentlichung:
T. Hengl, H. Kaneko, K. Dauner, K. Vocke, S. Frings, F. Möhrlen: Molecular Components of Signal Amplification in Olfactory Sensory Cilia. PNAS (30. März 2010) 107: 6052-6057, doi: 10.1073/pnas.0909032107
Kontakt:
Prof. Dr. Stephan Frings
Centre for Organismal Studies
Abteilung Molekulare Physiologie der Tiere
Telefon (06221) 54-5661
s.frings@zoo.uni-heidelberg.de
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@reaktorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.molekulare-physiologie.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie