Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

In the electron cloud

19.04.2010
Mapping the shape and dynamics of a molecule’s outer electron cloud is now possible using a novel experimental technique

The chemistry between atoms and molecules is strongly determined by their outer electron orbitals, or clouds, which participate in chemical processes. A team from three Japanese research institutes has now developed a method that can measure the three-dimensional shape and dynamics of an electron cloud1.

“The shape of an electron cloud is at the heart of intermolecular interactions that lead to beautiful chemistry,” comments Toshinori Suzuki from the RIKEN Advanced Science Institute in Wako, who led the research team.

Measuring the dynamics of an electron cloud is challenging because molecules in gases and liquids always move randomly; this makes it difficult to take a ‘snapshot’ of movement averaged over many molecules at a specific moment in time. However, the excitation of nitric oxide (NO) by a polarized laser beam can align those molecules along one axis, so that the measurement of their outer electron cloud becomes possible.

To detect the shape of the outer electron cloud of an NO molecule aligned by the first laser pulse, Suzuki and colleagues released the electrons from the molecule using a second laser pulse. They then applied an electric field to accelerate and project the expanding electron cloud onto a fluorescent screen where it was visualized as a direct representation of the original electron distribution (Fig. 1 - click on link for figure). The researchers then used computer algorithms, similar to those from computer tomography, to construct a three-dimensional picture from the two-dimensional representation.

Fundamental quantum mechanical principles limit the degree to which the molecules can be aligned by the laser pulse, Suzuki notes. This means that there is always unavoidable blurring in the reconstructed three-dimensional image. Removing this blurring in the final images was the most difficult part of the process, he says.

Suzuki and colleagues therefore analyzed how a three-dimensional image changes when the molecules rotate out of alignment. By correcting these misalignment effects, they eventually succeeded in perfectly sharpening the image.

The team’s algorithm can visualize the outer electron cloud of a molecule at rest, but the challenge now is to map the rapid changes that occur during chemical reactions. “The NO molecule was just a testing ground,” explains Suzuki. “Our main target is more complex molecules and their chemical reactions in response to light of different color.” Outlining his future vision, Suzuki says he would like to study the mechanism of photodamage to DNA starting with real-time observations of electron motions in their constituent base molecules.

The corresponding author for this highlight is based at the Chemical Dynamics Laboratory, RIKEN Advanced Science Institute

1. Tang, Y., Suzuki, Y.-I., Horio, T. & Suzuki, T. Molecular frame image restoration and partial wave analysis of photoionization dynamics of NO by time-energy mapping of photoelectron angular distribution. Physical Review Letters 104, 073002 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Discovery of a fundamental limit to the evolution of the genetic code
03.05.2016 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Perfect imperfection
03.05.2016 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste Filmaufnahmen von Kernporen

Mithilfe eines extrem schnellen und präzisen Rasterkraftmikroskops haben Forscher der Universität Basel erstmals «lebendige» Kernporenkomplexe bei der Arbeit gefilmt. Kernporen sind molekulare Maschinen, die den Verkehr in und aus dem Zellkern kontrollieren. In ihrem kürzlich in «Nature Nanotechnology» publizierten Artikel erklären die Forscher, wie bewegliche «Tentakeln» in der Pore die Passage von unerwünschten Molekülen verhindern.

Das Rasterkraftmikroskop (AFM) ist kein Mikroskop zum Durchschauen. Es tastet wie ein Blinder mit seinen Fingern die Oberflächen mit einer extrem feinen Spitze...

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 ist nicht immer 3 - In der Mikro-Welt macht Einigkeit nicht immer stark

Wenn jemand ein liegengebliebenes Auto alleine schiebt, gibt es einen bestimmten Effekt. Wenn eine zweite Person hilft, ist das Ergebnis die Summe der Kräfte der beiden. Wenn zwei kleine Teilchen allerdings ein weiteres kleines Teilchen anschieben, ist der daraus resultierende Effekt nicht notwendigerweise die Summe ihrer Kräfte. Eine kürzlich in Nature Communications veröffentlichte Studie hat diesen merkwürdigen Effekt beschrieben, den Wissenschaftler als „Vielteilchen-Effekt“ bezeichnen.

 

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Winzige Mikroroboter, die Wasser reinigen können

Forscher des Max-Planck-Institutes Stuttgart haben winzige „Mikroroboter“ mit Eigenantrieb entwickelt, die Blei aus kontaminiertem Wasser entfernen oder organische Verschmutzungen abbauen können.

In Zusammenarbeit mit Kollegen in Barcelona und Singapur verwendete die Gruppe von Samuel Sánchez Graphenoxid zur Herstellung ihrer Motoren im Mikromaßstab. D

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

UFW-Fachtagung im Vorzeichen von Big Data und Industrie 4.0

03.05.2016 | Veranstaltungen

analytica conference 2016 in München - Foodomics, mehr als nur ein Modebegriff?

03.05.2016 | Veranstaltungen

Diabetes Kongress 2016: Diabetes schädigt das Herzkreislauf-System

02.05.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hepatitis C-Virus missbraucht den Fettstoffwechsel der Leber

03.05.2016 | Biowissenschaften Chemie

UFW-Fachtagung im Vorzeichen von Big Data und Industrie 4.0

03.05.2016 | Veranstaltungsnachrichten

Ein starkes Team: B2RUN und moove bringen Firmen in Bewegung

03.05.2016 | Unternehmensmeldung