Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eiweißscheren in Tumoren sichtbar gemacht

01.09.2014

Enzyme erfüllen im menschlichen Körper viele wichtige Aufgaben. Im Inneren von kleinsten Zellorganellen hilft die Gruppe der Cathepsine beispielsweise gesunden Zellen beim Abbau von Eiweißstoffen.

Zum Problem werden diese Enzyme hingegen, wenn sich im umliegenden Gewebe Krebszellen ausbreiten. Dann begünstigen sie das Tumorwachstum. Wissenschaftler des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) haben nun erstmals eine radioaktive Sonde entwickelt, mit der sie Cathepsine – und damit Krebszellen – aufspüren und charakterisieren können. In Experimenten konnten sie bereits nachweisen, dass die verwendete Substanz verstärkt von erkranktem Gewebe aufgenommen wird.


3D-Modell eines mit Fluor-18 markierten Azadipeptidnitrils – eine chemische Verbindung, die in der Lage ist, an krebsrelevante Enzyme zu binden und diese damit sichtbar zu machen. HZDR

Abfall wird bekanntermaßen in Recyclinghöfen verarbeitet. Auch in den menschlichen Zellen gibt es spezielle Systeme, sogenannte Lysosomen, in denen alte und beschädigte, aber auch von den Zellen aufgenommene Eiweiße in ihre Bestandteile zerlegt und verwertet werden.

Eine wichtige Rolle spielen dabei die Cathepsine. Dies sind Enzyme, die wie eine Schere die Eiweißstoffe auftrennen, bevor die nächsten Recyclingschritte folgen. „Diese ,Mitarbeiter‘ der Recyclinghöfe erfüllen eine wichtige Aufgabe. Denn wenn solche gealterten oder beschädigten Eiweiße nicht abgebaut werden, treten schwere Krankheiten auf“, erklärt Dr. Reik Löser vom Institut für Radiopharmazeutische Krebsforschung am HZDR.

Diese nützliche Arbeit kann sich jedoch ins Gegenteil verkehren, sobald sich eine Tumorzelle auf das umliegende Gewebe – die extrazelluläre Matrix – ausbreitet. Cathepsine werden in diesem Fall auch aus den Lysosomen ausgeschleust.

„Getrennt von ihrer natürlichen Umgebung verhalten sich die Enzyme allerdings nicht wie Recyclingexperten, sondern wie eine überforderte Putzkolonne in einem Museum, die sich fragt, ob ein wertvolles Objekt Kunst oder Müll ist“, umschreibt Löser ihre Aktivität in der extrazellulären Matrix. Denn hier bauen sie – ihrer normalen Aufgabe entsprechend – auch solche Eiweißstoffe ab, die dem Gewebe Struktur und Halt geben. Dies begünstigt wiederum die Ausbreitung der erkrankten Zellen.

„Es erscheint daher vielversprechend, Tumoren perspektivisch mit Hemmstoffen zu behandeln, die die Aktivität der Cathepsine unterbinden. Dafür wäre es von erheblichem Vorteil, diese Enzyme durch bildgebende Verfahren visualisieren zu können“, erklärt Löser. Aufbauend auf speziellen chemischen Verbindungen (Azadipeptidnitrilen) hat der Dresdner Forscher eine radioaktiv markierte Sonde – einen sogenannten Radiotracer – entwickelt, der sich gut an die krebsrelevanten Cathepsine bindet.

„Bei der Grundsubstanz handelt es sich um einen Hemmstoff, der die Aktivitäten der Enzyme behindern soll“, erläutert Löser. „Indem wir das Radionuklid Fluor-18 über eine Hilfsgruppe mit der chemischen Verbindung verknüpft haben, konnten wir die Substanz in eine molekulare Sonde verwandeln, die für uns sowohl den Tumor aufspüren als auch Aussagen über seine Neigung, in umliegendes gesundes Gewebe einzudringen, liefern kann.“

Mit Hilfe der Positronen-Emissions-Tomographie (PET), einem modernen Bildgebungsverfahren, kann der Radiotracer im Körper sichtbar gemacht werden – und damit auch die Cathepsine, zusammen mit den erkrankten Zellen. Der Tracer, der in die Blutbahn injiziert wird, zerfällt mit einer Halbwertszeit von etwa 110 Minuten.

Dabei werden Positronen, positiv geladene Elementarteilchen, freigesetzt, die ebenfalls instabil sind. Bei ihrem „Verschwinden“ wird wiederum Energie ausgesendet, die mit einem Detektor gemessen werden kann. Ein Computer berechnet daraus anschließend eine dreidimensionale Abbildung. Die intensivste Strahlung geht dabei von den Zellen aus, in denen sich die höchste Konzentration des radioaktiv markierten Stoffes anreichert. „In unserem Fall sind das die Tumorzellen, da sich der Tracer ja besonders an die krebsrelevanten Cathepsine bindet“, beschreibt Löser den Vorgang.

Auf den PET-Bildern kann so das gesunde Gewebe von den erkrankten Zellen gut unterschieden werden. Dies konnten die Rossendorfer Wissenschaftler bei Untersuchungen mit Mäusen, die menschliche Tumorzellen trugen, zeigen. Ihre neuentwickelte Substanz reicherte sich in den erkrankten Zellen an. Bevor sie aber in der Klinik verwendet werden kann, wird noch einige Zeit vergehen, schätzt Löser: „Wir müssen die Stabilität der Substanz im Blut erhöhen, um dadurch einen besseren Kontrast von Tumor zu Normalgewebe zu erreichen. Momentan ist dieser noch zu gering. Trotzdem konnten wir mit der Entwicklung die präzisere Diagnose und Charakterisierung von Tumoren um einen weiteren wichtigen Schritt voranbringen.“

Publikation: Löser, R. et al. (2013). Synthesis and radiopharmacological characterisation of a fluorine-18-labelled azadipeptide nitrile as a potential PET tracer for in vivo imaging of cysteine cathepsins. ChemMedChem, 8, 1330, DOI: 10.1002/cmdc.201300135

Weitere Informationen:
Dr. Reik Löser
Institut für Radiopharmazeutische Krebsforschung am HZDR
Tel. +49 351 260 3658 | E-Mail: r.loeser@hzdr.de

Medienkontakt:
Christine Bohnet | Pressesprecherin
Tel. +49 351 260 2450 | c.bohnet@hzdr.de | www.hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf
Bautzner Landstr. 400 | 01328 Dresden

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR ist seit 2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Leipzig, Freiberg und Grenoble und beschäftigt rund 1.000 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Weitere Informationen:

http://www.hzdr.de/presse/cathepsine

Dr. Christine Bohnet | Helmholtz-Zentrum

Weitere Berichte zu: Eiweiße Energie Gewebe HZDR Helmholtz-Zentrum Institut Krebsforschung Krebszellen Materie Matrix PET Substanz Tracer Tumor Tumorzellen Zellen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie