Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eiweiße übernehmen Filterfunktion - Hochselektive und superschnelle Filter werden denkbar

12.09.2012
Könnten Pflanzen schneller wachsen, würde dem Hunger auf der Welt leichter beizukommen sein, davon sind auch viele Politiker überzeugt.
Dem Wunsch nach schnellerem Wachstum jedenfalls sind Biologen der TU Darmstadt nun einen Schritt näher gekommen. Sie haben nachgewiesen, dass der Gehalt an Kohlendioxid in pflanzlichen Zellen und damit ihr Wachstum mithilfe bestimmter Proteine künstlich erhöht werden kann. Ihre Forschungen könnten aber auch neue Ansätze in Umweltschutz und Medizin bringen.

„Wir wollten zeigen, dass natürliche, biologisch hergestellte Eiweiße in künstliche Membranen, sozusagen hauchdünne Plastikfolien, eingesetzt werden können und dabei funktionstüchtig bleiben“, erläutert Prof. Ralf Kaldenhoff von der Fakultät Biologie der TU Darmstadt. Das ist ihm und seinen Mitarbeitern Dr. Norbert Uehlein, Dr. Marlies Heckwolf und Beate Otto nun gelungen. Doch darüber hinaus konnten sie einen weiteren entscheidenden Nachweis erbringen.

Strukturveränderung macht Kohlendioxid den Weg frei

Die Darmstädter haben sogenannte Aquaporine untersucht, das sind Eiweiße in Membranen lebender Zellen, die dafür bekannt sind, quasi einen Tunnel für Wassermoleküle zu bilden. Dass sie darüber hinaus auch Kohlendioxid-Moleküle durch die Membran hindurchlassen könnten, hatten die Wissenschaftler zwar vermutet, waren jedoch auf wenig Zustimmung unter den Kollegen gestoßen, denn „biophysikalisch ist das zunächst nicht erklärbar.
Ihre Struktur ermöglicht es Kohlendioxid-Molekülen, frei durch Membranen zu diffundieren – Proteine, die eine Diffusion erleichtern, sind also nicht notwendig“, berichtet Kaldenhoff. „Aquaporine fungieren nur als CO2-Kanal in der tetrameren Form, also wenn sich vier von ihnen zusammenlegen und in ihrer Mitte eine Art Pore bilden. Durch diese diffundiert vermutlich das CO2.“

Großes wirtschaftliches Potenzial

In Pflanzen sind mehr als 20 Aquaporine bekannt, beim Menschen immerhin 13. Sie sind noch lange nicht ausreichend erforscht bezüglich ihrer Tunnelfunktionen. Die Darmstädter haben sich Aquaporinen aus der Acker-Schmalwand (Arabidopsis thaliana) gewidmet. Diese Pflanze wird in unseren Breiten gerne als „Unkraut“ eingestuft, ist jedoch für Pflanzenwissenschaftler ein Modellorganismus.
Die Arbeit der Darmstädter zeigt: Diese Aquaporine können die CO2-Diffusion im Gewebe erhöhen und damit die CO2-Versorgung von Chloroplasten verbessern. Diese wiederum sind Bestandteile pflanzlicher Zellen, die für die Photosynthese und damit auch für das Wachstum der Pflanze verantwortlich sind.

Neben Anwendungen im Agrarbereich ist ein technischer Einsatz der Proteine in Filtern denkbar. „Das wirtschaftliche Potenzial ist groß“, formuliert es Kaldenhoff. Generell lassen sich aus undurchlässigen durchlässige Membranen herstellen – und zwar wohldefiniert für einzelne Moleküle. Das wiederum bedeutet, dass man sehr selektive Filter bauen kann, mit deren Hilfe Moleküle in einer heute nicht denkbaren Geschwindigkeit aus Flüssigkeiten oder Gasen beziehungsweise der Luft herausgefiltert werden können. „Die Wasserleitfähigkeit etwa könnte um den Faktor 1000 höher sein als alles, was Menschen derzeit an Wasserleitfähigkeit herstellen können“, begeistert sich Kaldenhoff. „Viele denkbare Filtermedien könnten Wirklichkeit werden, von denen wir heute nur träumen.“ Zum Beispiel ließe sich Kohlendioxid aus der Luft viel effizienter herausfiltern – der Klimakiller kein Thema mehr?

Erste praktische Ansätze
Auch den Glauben, die CO2-Leitfähigkeit menschlicher Zellen sei unveränderbar, haben Kaldenhoff und seine Mitarbeiter damit erschüttert. „Doch, sie ist beeinflussbar, und das bringt uns schnell zu medizinischen Anwendungen. So könnte man sich vorstellen, Atemnot durch ein Aquaporine beeinflussendes Medikament zu behandeln.“ Erste Versuche mit Mäusen zeigen, dass Aquaporine gegen Kurzatmigkeit wirken.
Die Biologen der TU Darmstadt spezialisieren sich allerdings auf den Agrarsektor. Sie werden in Kürze gemeinsam mit einem Industrieunternehmen versuchen, Pflanzen tatsächlich schneller wachsen zu lassen.

Pressekontakt
Prof. Ralf Kaldenhoff
Tel. 06151 / 16-3805
kaldenhoff@bio.tu-darmstadt.de

Jörg Feuck | idw
Weitere Informationen:
http://www.tu-darmstadt.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen
22.06.2017 | Heinrich-Heine-Universität Düsseldorf

nachricht Im Mikrokosmos wird es bunt: 124 Farben dank RGB-Technologie
22.06.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie