Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eis in Brennstoffzellen erstmals direkt sichtbar gemacht

16.06.2014

Forscher des Paul Scherrer Instituts PSI haben mit Hilfe einer neuartigen Methode erstmals die Verteilung von Eis und flüssigem Wasser in einer Wasserstoff-Brennstoffzelle direkt abgebildet.

Die neue Bildgebungstechnik verwendet zwei Strahlen mit unterschiedlicher Neutronenenergie, um Bereiche mit flüssigem Wasser von solchen mit Eis mit hoher Zuverlässigkeit zu unterscheiden. Die Methode eröffnet somit die Perspektive, eines der wichtigsten Probleme bei der Anwendung von Brennstoffzellen als Fahrzeugantrieb zu untersuchen. Ihre Ergebnisse veröffentlichen die PSI-Wissenschaftler am 16.6.2014 im Journal Physical Review Letters.


Räumliche Verteilung von Eis und Wasser in einer zylindrischen Wassersäule, wie sie in der vorliegenden Studie mit der neuen Neutronenbildgebungstechnik gemessen wurde. Rot: nur Eis vorhanden

Bild: American Physical Society

Wasserstoff-Brennstoffzellen haben das Potenzial, die individuelle Mobilität der Zukunft umweltfreundlicher zu machen. In den Zellen wird Wasserstoff als „Brennstoff“ aufgespalten, der elektrochemisch mit Sauerstoff reagiert – dabei entsteht elektrischer Strom. Als Nebenprodukte fallen nur Wärme und Wasser an. Doch gerade Letzteres, das Wasser, kann für Brennstoffzellen-Antriebe in der Praxis ein Problem darstellen. In kälteren Klimaregionen kann das Wasser nämlich bei abgeschaltetem Antrieb gefrieren und die Funktion der Brennstoffzellen beeinträchtigen. Eine neue Arbeit von PSI-Forschenden ermöglicht es zum ersten Mal, die Verteilung von Eis und Wasser in einer Brennstoffzelle direkt abzubilden. Das eröffnet eine neue Möglichkeit, um das Problem der Eisbildung besser zu untersuchen und dessen Lösung weiter zu optimieren.

Das Problem der Eisbildung

Eis kann sich in den porösen Strukturen der Elektroden einer Brennstoffzelle ablagern. Das Eis behindert die Funktion der Zelle, indem es die Poren verstopft, durch die der Sauerstoff an die positive Elektrode (Kathode) der Zelle gelangt. Wenn der Sauerstoff die Kathode der Zelle nicht erreicht, können die elektrochemischen Reaktionen, in denen die Zelle Strom produziert, nicht mehr stattfinden. Die Spannung in der Zelle bricht in der Folge zusammen und diese liefert dann keinen Strom mehr.

Die poröse Elektrodenstruktur dient auch dazu, das Wasser aus der Brennstoffzelle fliessen zu lassen. Das nach dem Betrieb noch verbliebene flüssige Wasser kann dann zum Beispiel über Nacht gefrieren. Da Eis mehr Volumen einnimmt als flüssiges Wasser, kann die Eisbildung auch mechanische Schäden an den Komponenten der Zelle verursachen.

Messung mit zweierlei Mass

Die Bildgebung von Wasser mit Neutronen nutzt die Tatsache, dass die Neutronen von den Wasserstoffatomen stark gestreut (abgelenkt) werden. Ein gerichteter Neutronenstrahl wird also in seiner Intensität stark abgeschwächt, wenn er ein Medium mit viel Wasserstoff durchquert. Das Ausmass der Abschwächung hängt bei der neuen Technik, „Dual Spectrum Neutron Radiography“ genannt, von der Bewegungsenergie der Wassermoleküle ab. Im gefrorenen Zustand ist diese Bewegungsenergie viel kleiner als im flüssigen Zustand. So kann flüssiges Wasser vom Eis unterschieden werden. Wollte man Wasser und Eis in einem konventionellen Neutronenexperiment auseinanderhalten, müsste die Dicke der untersuchten Wasserschicht im Voraus bekannt sein. In Brennstoffzellen ist das aber in der Regel nicht möglich; die Forschenden fanden jedoch einen Ausweg, indem sie ihre Proben mit zwei Neutronenstrahlen massen.

Bei der neuen Bildgebungstechnik vergleicht man, wie zwei Neutronenstrahlen mit jeweils unterschiedlicher Neutronenenergie von den Wassermolekülen abgeschwächt werden. Einer dieser Strahlen wurde dahingehend gefiltert, dass er nur noch Neutronen mit niedriger Energie enthielt. Der zweite Strahl wurde hingegen in seiner ursprünglichen Form mit dem gesamten Neutronenspektrum belassen. Aus dem Verhältnis der Abschwächung der beiden Strahlen erhält man die Anteile von flüssigem Wasser und Eis in der Zelle, ohne dass eine Wasserschichtdicke im Voraus bekannt sein müsste. Das Verhältnis der Abschwächungen hängt in der Tat nur von der unterschiedlichen Stärke ab, mit der flüssiges Wasser und Eis die Neutronen ablenken. Deshalb kann man aus dem Vergleich der Messungen mit gefiltertem und ungefiltertem Neutronenstrahl jeweils den Aggregatzustand des Wassers bestimmen.

Unterkühltes Wasser nachgewiesen

Durch ihre Messungen an der Neutronenstrahllinie ICON der PSI-eigenen Neutronenquelle SINQ konnten die PSI-Forschenden nicht nur die Verteilung von Wasser und Eis in einer Brennstoffzelle kartieren. Ihnen gelang auch zum ersten Mal der direkte Nachweis für eine alte Vermutung über das Verhalten von Wasser in Brennstoffzellen. Es wurde nämlich schon lange angenommen, dass Wasser in Brennstoffzellen im unterkühlten Zustand vorhanden sein könnte. Unterkühlt bedeutet, dass das Wasser selbst unter Null Grad Celsius nicht gefriert. Durch direkte Abbildung konnten die Autoren der neuen Studie nun zeigen, dass bei Temperaturen von bis zu Minus 7,5 Grad flüssiges Wasser in der Zelle übrigblieb. „Der Beweis, dass unterkühltes Wasser in Brennstoffzellen vorkommt, ist nicht nur in theoretischer Hinsicht wichtig“, sagt Thomas Justus Schmidt, Leiter des Labors für Elektrochemie und Mitautor der Studie. „Auch für die praktische Anwendung ist es gut zu wissen, dass man eine Marge an Temperatur hat, in der man sich nicht um die Eisbildung kümmern muss.“

Text: Paul Scherrer Institut/Leonid Leiva

Originalveröffentlichung:

Dual spectrum neutron radiography: Identification of phase transitions between frozen and liquid water

J. Biesdorf, P. Oberholzer, F. Bernauer, A. Kaestner, P. Vontobel, E. H. Lehmann, T. J. Schmidt und P. Boillat, Physical Review Letters, accepted paper.

Über das PSI

Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Lernende, Doktorierende oder Postdoktorierende. Insgesamt beschäftigt das PSI 1900 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 350 Mio.

Weitere Informationen:

http://www.psi.ch/lec Labor für Elektrochemie am PSI
http://www.psi.ch/lns Labor für Neutronenstreuung und -imaging

Dagmar Baroke | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht
18.10.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Pflanzen können drei Eltern haben
18.10.2017 | Universität Bremen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mobilität 4.0: Konferenz an der Jacobs University

18.10.2017 | Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

18.10.2017 | Biowissenschaften Chemie

Biokunststoffe könnten auch in Traktoren die Richtung angeben

18.10.2017 | Messenachrichten

»ILIGHTS«-Studie gestartet: Licht soll Wohlbefinden von Schichtarbeitern verbessern

18.10.2017 | Energie und Elektrotechnik