Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einzelne Moleküle auf Nanoebene abbilden? Neue Software simuliert superhochaufgelöste Lichtmikroskopie und ermöglicht die Planung von Laborversuchen

04.04.2016

Mit der Software "SuReSim" unnötige Versuchsreihen vermeiden und wertvolle Ressourcen im Labor sparen / Heidelberger Anatomen veröffentlichen in "Nature Methods"

Wissenschaftler am Institut für Anatomie und Zellbiologie der Mediznischen Fakultät Heidelberg haben die Opensource Software SuReSim (Super Resolution Simulation) entwickelt: Dieses Programm ermöglicht Anwendern Voraussagungen darüber zu treffen, ob eine biologische Struktur mit der Einzelmolekül-Fluoreszenzmikroskopie, einer Technik der superhochaufgelösten Lichtmikroskopie für welche 2014 der Nobelpreis verliehen wurde, dargestellt werden kann.


Mikrotubuli des Zytoskeletts einer Nervenzellle, röhrenähnliche Strukturen welchen den Zellen mechanische Stabilität geben, in räumlicher Anordnung wurden hier für eine Aufnahme mit der Einzelmolekül-Fluoreszenzmikroskopie simuliert: Die roten Linien stellen die Kurve der Mikrotubuli in räumlicher Anordnung dar, die gelben Stifte die Orientierung von Fluoreszenzmarkern und die weißen Punkte zeigen simulierte Lokalisationen. Die Lokalisationen skizzieren die Ansiedlung der Mikrotubuli mit höchster Präzision (Zahlen sind Entfernungen in Nanometern).

Foto: Varun Venkatamarani und Frank Herrmannsdörfer, Abteilung Funktionelle Neuroanatomie, Institut für Anatomie und Zellbiologie.

Die Forschungsgruppe hat damit in zweierlei Hinsicht einen neuen, optimierten Ansatz geschaffen: Zum einen ermöglicht die Software, Bildgebungsversuche mit Einzelmolekül-Fluoreszenzmikroskopie zu planen und zu validieren; zum anderen kann sie unnötige Versuchsreihen vermeiden und hilft so, wertvolle Zeit und Ressourcen zu sparen und eine Unter- oder Überinterpretation von Bilddaten zu vermeiden. Die Ergebnisse der Arbeit wurden vorab online in „Nature Methods“ veröffentlicht.

Einzelmolekül-Fluoreszenzmikroskopie, eine spezifische Form der superhochauflösenden Lichtmikroskopie, wird zunehmend genutzt, um molekulare und zelluläre Strukturen auf Nanoebene zu entschlüsseln. In der Regel gehen Wissenschaftler davon aus, dass die meisten molekularen Strukturen auf dieser Skala aufgelöst werden können.

Dennoch bleibt das Planen und Validieren von Versuchen, welche es zum Ziel haben molekulare Strukturen und deren Anordnung aufzulösen, eine grundlegende Herausforderung. SuReSim ist ein Softwareprogramm, das von den Mitgliedern des Exzellenzclusters CellNetworks der Universität Heidelberg, Prof. Dr. Thomas Kuner (Institut für Anatomie und Zellbiologie) und Prof. Dr. Mike Heilemann (Institut für Physikalische und Theoretische Chemie, Goethe Universität Frankfurt), entwickelt wurde.

Auf der Grundlage von Modellen aus elektronenmikroskopischen Daten simuliert das Programm Daten zur Anordnung beliebiger dreidimensionaler Strukturen. Anwender können so systematisch erforschen, wie sich Änderungen in den Versuchsparametern auf die potenziellen Bildgebungen auswirken, also ob die molekularen Strukturen dann mikroskopisch darstellbar sind.

Kontaktstellen zwischen Nervenzellen erfolgreich im Detail dargestellt und vorab simuliert

„Wir haben mit der Einzelmolekül-Fluoreszenzmikroskopie die Proteinzusammensetzung an Kontaktstellen zwischen Nervenzellen, der so genannten aktiven Zone von Synapsen, untersucht“, erläutert Prof. Dr. Kuner. „Daraus ist das Forschungsprojekt zur neuen Software entstanden. Mit Hilfe der Simulation haben wir verstanden, dass nicht nur die primäre Auflösung des Mikroskops eine Rolle spielt, sondern eben auch die Dichte und Anordnungen der Proteine im Präparat entscheidend dafür ist, ob Strukturen geeignet dargestellt werden können oder nicht.“

SuReSim nutzt einen Ansatz zur Bildsimulation, der auf detaillierten Strukturmodellen basiert. Solche Modelle können für viele Versuche entwickelt werden, weil die zelluläre Ultrastruktur und die Strukturen vieler Proteine gut erforscht sind, auch wenn Details der molekularen 3D-Nanostruktur von Zellen meist noch unklar bleiben.

Der SuReSim-Workflow startet mit einem Strukturmodell, welches je nach Vorwissen spezifiziert werden kann. In einem zweiten Schritt lassen sich fluoreszierende Farbstoffe in einer bestimmten Dichte und Orientierung hinzufügen. Die Software simuliert die Anordnung der Marker und gibt schließlich ein Bild aus. So kann eine Vielzahl wichtiger Versuchsparameter für die Einzelmolekül-Fluoreszenzmikroskopie angewandt und ihr Einfluss auf das daraus entstandene Bild ausgewertet werden.

Die volle Funktion von SuReSim liegt in der Hypothesenprüfung und der Versuchsplanung. Um die Funktionalität des Programms zu zeigen, nutzten Varun Venkataramani und Frank Herrmannsdörfer, Doktoranden aus der Forschungsgruppe von Prof. Dr. Kuner, bestimmte Teile von Nervenzellen, die synaptischen Bläschen. Sie besitzen eine eindeutige Größe und molekulare Struktur und sind dafür bekannt, dass sie sich dicht gedrängt in Gruppen an den Kontaktstellen von Nervenzellen – den Synapsen- sammeln.

Dennoch bleiben ihre Interaktionen untereinander sowie mit ihrer Umgebung, z.B. Elementen des so genannten Zytoskeletts oder der aktiven Zone der Synapsen, wenig erforscht. Das gleiche gilt für die molekulare Struktur. SuReSim wurde eingesetzt, um zu testen, ob die 3D-Einzelmolekül-Fluoreszenzmikroskopie einzelne Bläschen und die Moleküle, die die synaptischen Bläschen in Gruppen organisieren, visualisieren kann. Das Versuchsergebnis sagte voraus, dass einzelne synaptische Bläschen in einem Bläschencluster tatsächlich dargestellt werden können, wenn die fluoreszierenden Farbstoffe als Marker an spezifischen Stellen gesetzt und ideale Bedingungen für die Aufnahme der Bilder gegeben sind.

„SuReSim ist ein vielseitiges Programm mit den unterschiedlichsten Anwendungen“, fügt Prof. Dr. Kuner hinzu. „Einerseits kann es Vorhersagen über die Visualisierung der Zellstruktur machen, wie sie mit der Einzelmolekül-Fluoreszenzmikroskopie dargestellt werden. Aber es können auch Auswertungen von strukturellen Hypothesen gemacht werden. Daher kann die Software zu einem nützlichen Programm für die effiziente Planung von Versuchen mit Einzelmolekül-Fluoreszenzmikroskopie werden, womit wertvolle Ressourcen eingespart werden können.“

Literatur:
Varun Venkataramani, Frank Herrmannsdörfer, Mike Heilemann & Thomas Kuner: SuReSim: simulating localization microscopy experiments from ground truth models. Nature Methods (2016), doi:10.1038/nmeth.3775

Kontakt:
Prof. Dr. Thomas Kuner
Abteilung Funktionelle Neuroanatomie
Institut für Anatomie und Zellbiologie
Universität Heidelberg
06221-54-8678
kuner@uni-heidelberg.de

Weitere Informationen:

http://www.ana.uni-heidelberg.de/index.php?id=164 Abteilung Funktionelle Neuroanatomie
http://www.ana.uni-heidelberg.de/?id=198 SuReSim Software Projekt
http://www.cellnetworks.uni-hd.de/ Exzellenzcluster CellNetworks

Julia Bird | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.klinikum.uni-heidelberg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie