Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einzelne Moleküle auf Nanoebene abbilden? Neue Software simuliert superhochaufgelöste Lichtmikroskopie und ermöglicht die Planung von Laborversuchen

04.04.2016

Mit der Software "SuReSim" unnötige Versuchsreihen vermeiden und wertvolle Ressourcen im Labor sparen / Heidelberger Anatomen veröffentlichen in "Nature Methods"

Wissenschaftler am Institut für Anatomie und Zellbiologie der Mediznischen Fakultät Heidelberg haben die Opensource Software SuReSim (Super Resolution Simulation) entwickelt: Dieses Programm ermöglicht Anwendern Voraussagungen darüber zu treffen, ob eine biologische Struktur mit der Einzelmolekül-Fluoreszenzmikroskopie, einer Technik der superhochaufgelösten Lichtmikroskopie für welche 2014 der Nobelpreis verliehen wurde, dargestellt werden kann.


Mikrotubuli des Zytoskeletts einer Nervenzellle, röhrenähnliche Strukturen welchen den Zellen mechanische Stabilität geben, in räumlicher Anordnung wurden hier für eine Aufnahme mit der Einzelmolekül-Fluoreszenzmikroskopie simuliert: Die roten Linien stellen die Kurve der Mikrotubuli in räumlicher Anordnung dar, die gelben Stifte die Orientierung von Fluoreszenzmarkern und die weißen Punkte zeigen simulierte Lokalisationen. Die Lokalisationen skizzieren die Ansiedlung der Mikrotubuli mit höchster Präzision (Zahlen sind Entfernungen in Nanometern).

Foto: Varun Venkatamarani und Frank Herrmannsdörfer, Abteilung Funktionelle Neuroanatomie, Institut für Anatomie und Zellbiologie.

Die Forschungsgruppe hat damit in zweierlei Hinsicht einen neuen, optimierten Ansatz geschaffen: Zum einen ermöglicht die Software, Bildgebungsversuche mit Einzelmolekül-Fluoreszenzmikroskopie zu planen und zu validieren; zum anderen kann sie unnötige Versuchsreihen vermeiden und hilft so, wertvolle Zeit und Ressourcen zu sparen und eine Unter- oder Überinterpretation von Bilddaten zu vermeiden. Die Ergebnisse der Arbeit wurden vorab online in „Nature Methods“ veröffentlicht.

Einzelmolekül-Fluoreszenzmikroskopie, eine spezifische Form der superhochauflösenden Lichtmikroskopie, wird zunehmend genutzt, um molekulare und zelluläre Strukturen auf Nanoebene zu entschlüsseln. In der Regel gehen Wissenschaftler davon aus, dass die meisten molekularen Strukturen auf dieser Skala aufgelöst werden können.

Dennoch bleibt das Planen und Validieren von Versuchen, welche es zum Ziel haben molekulare Strukturen und deren Anordnung aufzulösen, eine grundlegende Herausforderung. SuReSim ist ein Softwareprogramm, das von den Mitgliedern des Exzellenzclusters CellNetworks der Universität Heidelberg, Prof. Dr. Thomas Kuner (Institut für Anatomie und Zellbiologie) und Prof. Dr. Mike Heilemann (Institut für Physikalische und Theoretische Chemie, Goethe Universität Frankfurt), entwickelt wurde.

Auf der Grundlage von Modellen aus elektronenmikroskopischen Daten simuliert das Programm Daten zur Anordnung beliebiger dreidimensionaler Strukturen. Anwender können so systematisch erforschen, wie sich Änderungen in den Versuchsparametern auf die potenziellen Bildgebungen auswirken, also ob die molekularen Strukturen dann mikroskopisch darstellbar sind.

Kontaktstellen zwischen Nervenzellen erfolgreich im Detail dargestellt und vorab simuliert

„Wir haben mit der Einzelmolekül-Fluoreszenzmikroskopie die Proteinzusammensetzung an Kontaktstellen zwischen Nervenzellen, der so genannten aktiven Zone von Synapsen, untersucht“, erläutert Prof. Dr. Kuner. „Daraus ist das Forschungsprojekt zur neuen Software entstanden. Mit Hilfe der Simulation haben wir verstanden, dass nicht nur die primäre Auflösung des Mikroskops eine Rolle spielt, sondern eben auch die Dichte und Anordnungen der Proteine im Präparat entscheidend dafür ist, ob Strukturen geeignet dargestellt werden können oder nicht.“

SuReSim nutzt einen Ansatz zur Bildsimulation, der auf detaillierten Strukturmodellen basiert. Solche Modelle können für viele Versuche entwickelt werden, weil die zelluläre Ultrastruktur und die Strukturen vieler Proteine gut erforscht sind, auch wenn Details der molekularen 3D-Nanostruktur von Zellen meist noch unklar bleiben.

Der SuReSim-Workflow startet mit einem Strukturmodell, welches je nach Vorwissen spezifiziert werden kann. In einem zweiten Schritt lassen sich fluoreszierende Farbstoffe in einer bestimmten Dichte und Orientierung hinzufügen. Die Software simuliert die Anordnung der Marker und gibt schließlich ein Bild aus. So kann eine Vielzahl wichtiger Versuchsparameter für die Einzelmolekül-Fluoreszenzmikroskopie angewandt und ihr Einfluss auf das daraus entstandene Bild ausgewertet werden.

Die volle Funktion von SuReSim liegt in der Hypothesenprüfung und der Versuchsplanung. Um die Funktionalität des Programms zu zeigen, nutzten Varun Venkataramani und Frank Herrmannsdörfer, Doktoranden aus der Forschungsgruppe von Prof. Dr. Kuner, bestimmte Teile von Nervenzellen, die synaptischen Bläschen. Sie besitzen eine eindeutige Größe und molekulare Struktur und sind dafür bekannt, dass sie sich dicht gedrängt in Gruppen an den Kontaktstellen von Nervenzellen – den Synapsen- sammeln.

Dennoch bleiben ihre Interaktionen untereinander sowie mit ihrer Umgebung, z.B. Elementen des so genannten Zytoskeletts oder der aktiven Zone der Synapsen, wenig erforscht. Das gleiche gilt für die molekulare Struktur. SuReSim wurde eingesetzt, um zu testen, ob die 3D-Einzelmolekül-Fluoreszenzmikroskopie einzelne Bläschen und die Moleküle, die die synaptischen Bläschen in Gruppen organisieren, visualisieren kann. Das Versuchsergebnis sagte voraus, dass einzelne synaptische Bläschen in einem Bläschencluster tatsächlich dargestellt werden können, wenn die fluoreszierenden Farbstoffe als Marker an spezifischen Stellen gesetzt und ideale Bedingungen für die Aufnahme der Bilder gegeben sind.

„SuReSim ist ein vielseitiges Programm mit den unterschiedlichsten Anwendungen“, fügt Prof. Dr. Kuner hinzu. „Einerseits kann es Vorhersagen über die Visualisierung der Zellstruktur machen, wie sie mit der Einzelmolekül-Fluoreszenzmikroskopie dargestellt werden. Aber es können auch Auswertungen von strukturellen Hypothesen gemacht werden. Daher kann die Software zu einem nützlichen Programm für die effiziente Planung von Versuchen mit Einzelmolekül-Fluoreszenzmikroskopie werden, womit wertvolle Ressourcen eingespart werden können.“

Literatur:
Varun Venkataramani, Frank Herrmannsdörfer, Mike Heilemann & Thomas Kuner: SuReSim: simulating localization microscopy experiments from ground truth models. Nature Methods (2016), doi:10.1038/nmeth.3775

Kontakt:
Prof. Dr. Thomas Kuner
Abteilung Funktionelle Neuroanatomie
Institut für Anatomie und Zellbiologie
Universität Heidelberg
06221-54-8678
kuner@uni-heidelberg.de

Weitere Informationen:

http://www.ana.uni-heidelberg.de/index.php?id=164 Abteilung Funktionelle Neuroanatomie
http://www.ana.uni-heidelberg.de/?id=198 SuReSim Software Projekt
http://www.cellnetworks.uni-hd.de/ Exzellenzcluster CellNetworks

Julia Bird | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.klinikum.uni-heidelberg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten