Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einzelne lebende Zellen anzapfen

15.07.2016

Biologen interessieren sich zunehmend für das Verhalten einzelner Zellen statt für jenes ganzer Zellverbände. Eine neue Methode könnte solche «Einzel-Zell-Analysen» revolutionieren. Die Technik nutzt die kleinste Spritze der Welt, um damit den Inhalt von einzelnen Zellen aussaugen und untersuchen zu können.

Forschende der ETH Zürich haben eine Methode entwickelt, um einzelne lebende Zellen mit einer Mikro-Injektionsnadel anzupiksen und deren Inhalt auszusaugen. Angewandt werden kann die Technik etwa bei Zellkulturen, um das Innere der Zellen zu untersuchen.


Mit dem an der ETH Zürich entwickelten System FluidFM können Forschende unter dem Mikroskop den Inhalt einzelner lebender Zellen anzapfen. (Grafik: ETH Zürich)

Sie ermöglicht, auf molekularer Ebene Unterschiede zwischen einzelnen Zellen zu erkennen und damit auch seltene Zelltypen zu finden und zu analysieren. «Unsere Methode erweitert das Repertoire der biologischen Forschung enorm. Wir öffnen quasi ein neues Kapitel», sagt Julia Vorholt, Professorin am Departement Biologie.

So hat die Methode zahlreiche Vorteile: Es ist mit ihr möglich, einzelne Zellen einer Gewebekultur direkt in der Zellkulturschale zu beproben. «Wir können somit der Frage nachgehen, wie eine Zelle im Zellverband ihre Nachbarzellen beeinflusst», sagt Orane Guillaume-Gentil, Postdoc in der Gruppe von Vorholt. Mit bisherigen Standardmethoden wären solche Untersuchungen nicht möglich, da für molekulare Analysen die Zellen eines Verbands in der Regel voneinander getrennt, in Lösung gebracht und zerstört werden.

Beprobte Zellen bleiben am Leben

Ausserdem lässt sich die Mikronadel so genau steuern, dass die Wissenschaftler gezielt entweder den Inhalt des Zellkerns oder die den Zellkern umgebende Flüssigkeit, das Cytosol, anzapfen können. Und schliesslich können die Forschenden extrem präzis bestimmen, welche Menge Zellinhalt sie absaugen – bis auf einen Zehntel Pikoliter genau (auf einen Zehnmilliardstel eines Milliliters). Zum Vergleich: Das Volumen einer Zelle ist zehn- bis hundertmal grösser.

Mit der Mikronadel angezapfte Zellen bleiben am Leben. Dadurch können die Forschenden ein und dieselbe Zelle mehrmals beproben und deren RNA und Proteine – sowie in Zukunft möglicherweise auch Stoffwechselprodukte – analysieren. «Dass die von uns untersuchten Zellen selbst dann überlebten, als wir mit der Nadel einen Grossteil ihres Cytosols extrahierten, überraschte uns», sagt ETH-Professorin Vorholt. Dies untermaure jedoch, wie erstaunlich anpassungsfähig biologische Zellen seien.

Anwendungen erweitert

Die neue Zellextraktionsmethode basiert auf dem in den vergangenen Jahren an der ETH Zürich entwickelten Mikroinjektionssystem FluidFM, das als «kleinste Injektionsnadel der Welt» gilt. Damit konnten Biologen schon bisher Stoffe in einzelne Zellen injizieren. Ebenfalls eignete sich FluidFM und dessen Mikronadel, um Zellen mit Unterdruck sanft anzuheben und sie umzuplatzieren.

Um nun auch Stoffe aus Zellen extrahieren zu können, entwickelten Vorholt und ihre Gruppe das System weiter. «Besonders wichtig war, für die Nadel eine geeignete Beschichtung zu finden, damit sich keine Zellinhaltsstoffe darin ablagern», sagt Guillaume-Gentil. Ausserdem galt es, die Analysetechniken für die Zellinhaltsstoffe – etwa solche zur Messung der Aktivität von Enzymen – an die winzigen Messvolumen anzupassen.

Die Weiterentwicklung des Systems erfolgte in enger Zusammenarbeit mit Forschern um Tomaso Zambelli, Privatdozent am Departement Informationstechnologie und Elektrotechnik der ETH Zürich, mit Martin Pilhofer, Professor am Institut für Molekularbiologie und Biophysik, sowie mit dem ETH-Spin-off Cytosurge, welches die FluidFM-Technik vermarktet.

Literaturhinweis

Guillaume-Gentil O, Grindberg RV, Kooger R, Dorwling-Cater L, Martinez V, Ossola D, Pilhofer M, Zambelli T, Vorholt JA: Tunable single-cell extraction for molecular analysis. Cell 2016, 166: 506-516,doi: 10.1016/j.cell.2016.06.025 [http://dx.doi.org/10.1016/j.cell.2016.06.025]

News und Medienstelle | Eidgenössische Technische Hochschule Zürich (ETH Zürich)
Weitere Informationen:
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Schalter umlegen, Tumorentwicklung stoppen
22.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Tröpfchen für Tröpfchen
22.06.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

Die Zukunft der Informationstechnologie - Internationale Konferenz erstmals in Aachen

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

22.06.2017 | Geowissenschaften

Wie Protonen durch eine Brennstoffzelle wandern

22.06.2017 | Energie und Elektrotechnik

Tröpfchen für Tröpfchen

22.06.2017 | Biowissenschaften Chemie