Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einzelne lebende Zellen anzapfen

15.07.2016

Biologen interessieren sich zunehmend für das Verhalten einzelner Zellen statt für jenes ganzer Zellverbände. Eine neue Methode könnte solche «Einzel-Zell-Analysen» revolutionieren. Die Technik nutzt die kleinste Spritze der Welt, um damit den Inhalt von einzelnen Zellen aussaugen und untersuchen zu können.

Forschende der ETH Zürich haben eine Methode entwickelt, um einzelne lebende Zellen mit einer Mikro-Injektionsnadel anzupiksen und deren Inhalt auszusaugen. Angewandt werden kann die Technik etwa bei Zellkulturen, um das Innere der Zellen zu untersuchen.


Mit dem an der ETH Zürich entwickelten System FluidFM können Forschende unter dem Mikroskop den Inhalt einzelner lebender Zellen anzapfen. (Grafik: ETH Zürich)

Sie ermöglicht, auf molekularer Ebene Unterschiede zwischen einzelnen Zellen zu erkennen und damit auch seltene Zelltypen zu finden und zu analysieren. «Unsere Methode erweitert das Repertoire der biologischen Forschung enorm. Wir öffnen quasi ein neues Kapitel», sagt Julia Vorholt, Professorin am Departement Biologie.

So hat die Methode zahlreiche Vorteile: Es ist mit ihr möglich, einzelne Zellen einer Gewebekultur direkt in der Zellkulturschale zu beproben. «Wir können somit der Frage nachgehen, wie eine Zelle im Zellverband ihre Nachbarzellen beeinflusst», sagt Orane Guillaume-Gentil, Postdoc in der Gruppe von Vorholt. Mit bisherigen Standardmethoden wären solche Untersuchungen nicht möglich, da für molekulare Analysen die Zellen eines Verbands in der Regel voneinander getrennt, in Lösung gebracht und zerstört werden.

Beprobte Zellen bleiben am Leben

Ausserdem lässt sich die Mikronadel so genau steuern, dass die Wissenschaftler gezielt entweder den Inhalt des Zellkerns oder die den Zellkern umgebende Flüssigkeit, das Cytosol, anzapfen können. Und schliesslich können die Forschenden extrem präzis bestimmen, welche Menge Zellinhalt sie absaugen – bis auf einen Zehntel Pikoliter genau (auf einen Zehnmilliardstel eines Milliliters). Zum Vergleich: Das Volumen einer Zelle ist zehn- bis hundertmal grösser.

Mit der Mikronadel angezapfte Zellen bleiben am Leben. Dadurch können die Forschenden ein und dieselbe Zelle mehrmals beproben und deren RNA und Proteine – sowie in Zukunft möglicherweise auch Stoffwechselprodukte – analysieren. «Dass die von uns untersuchten Zellen selbst dann überlebten, als wir mit der Nadel einen Grossteil ihres Cytosols extrahierten, überraschte uns», sagt ETH-Professorin Vorholt. Dies untermaure jedoch, wie erstaunlich anpassungsfähig biologische Zellen seien.

Anwendungen erweitert

Die neue Zellextraktionsmethode basiert auf dem in den vergangenen Jahren an der ETH Zürich entwickelten Mikroinjektionssystem FluidFM, das als «kleinste Injektionsnadel der Welt» gilt. Damit konnten Biologen schon bisher Stoffe in einzelne Zellen injizieren. Ebenfalls eignete sich FluidFM und dessen Mikronadel, um Zellen mit Unterdruck sanft anzuheben und sie umzuplatzieren.

Um nun auch Stoffe aus Zellen extrahieren zu können, entwickelten Vorholt und ihre Gruppe das System weiter. «Besonders wichtig war, für die Nadel eine geeignete Beschichtung zu finden, damit sich keine Zellinhaltsstoffe darin ablagern», sagt Guillaume-Gentil. Ausserdem galt es, die Analysetechniken für die Zellinhaltsstoffe – etwa solche zur Messung der Aktivität von Enzymen – an die winzigen Messvolumen anzupassen.

Die Weiterentwicklung des Systems erfolgte in enger Zusammenarbeit mit Forschern um Tomaso Zambelli, Privatdozent am Departement Informationstechnologie und Elektrotechnik der ETH Zürich, mit Martin Pilhofer, Professor am Institut für Molekularbiologie und Biophysik, sowie mit dem ETH-Spin-off Cytosurge, welches die FluidFM-Technik vermarktet.

Literaturhinweis

Guillaume-Gentil O, Grindberg RV, Kooger R, Dorwling-Cater L, Martinez V, Ossola D, Pilhofer M, Zambelli T, Vorholt JA: Tunable single-cell extraction for molecular analysis. Cell 2016, 166: 506-516,doi: 10.1016/j.cell.2016.06.025 [http://dx.doi.org/10.1016/j.cell.2016.06.025]

News und Medienstelle | Eidgenössische Technische Hochschule Zürich (ETH Zürich)
Weitere Informationen:
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten