Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einzeller: Feinjustierung an der inneren Uhr einer Grünalge

01.10.2008
Biologen und Bioinformatiker der Universität Jena erforschen Tag-Nacht-Rhythmus von Einzellern

Wer eine weite Reise per Flugzeug unternimmt, wird am Ziel meist vom Jetlag geplagt. Der Biorhythmus ist gestört, die "innere Uhr" aus dem Takt geraten. Dabei nehmen wir sie kaum wahr, solange sie richtig "tickt".

Doch nicht nur hochkomplexe Organismen wie der Mensch leben nach einem relativ stabilen Biorhythmus. Grünalgen der Art Chlamydomonas reinhardtii sind so winzig, dass sie mit bloßem Auge nicht erkennbar sind. Dennoch tickt auch in diesen Einzellern eine innere Uhr, die den Lebensrhythmus der Winzlinge bestimmt. "Kurz vor Tagesanbruch werfen die Algen sozusagen ihren Motor an, gesteuert von einer inneren Uhr", sagt Prof. Dr. Stefan Schuster. So sind die Einzeller bereit für die Stoffwechselaktivitäten, für die sie das Licht benötigen - sozusagen ihr Tagewerk.

Schuster, der Inhaber eines von zwei Lehrstühlen für Bioinformatik der Friedrich-Schiller-Universität Jena, möchte gemeinsam mit der Botanikerin Prof. Dr. Maria Mittag erforschen, wie die "innere Uhr" des Einzellers tickt. Das Bundesministerium für Bildung und Forschung (BMBF) fördert dieses Kooperationsprojekt mit insgesamt etwa 850.000 Euro, angelegt ist es auf die Dauer von drei Jahren. Die Jenaer Wissenschaftler Mittag und Schuster arbeiten eng mit Dr. Oliver Ebenhöh zusammen, der in Golm bei Potsdam im Programm "GoFORSYS" arbeitet. "GoFORSYS" ist eines von vier deutschen Forschungszentren für Systembiologie, es ist am Max-Planck-Institut für molekulare Pflanzenphysiologie und anderen Instituten im Potsdamer Raum angesiedelt.

Chlamydomonas reinhardtii dient den Wissenschaftlern als Modellpflanze. Der genügsame Einzeller lässt sich rasch vermehren und steht so in ausreichender Menge zur Verfügung. Außerdem weist die Alge Eigenschaften von Pflanze und Tier auf, sie kann deshalb als Modell für andere Lebewesen dienen. Sogar menschliche Krankheiten sind mit ihrer Hilfe bereits entschlüsselt worden.

Der Bioinformatiker Stefan Schuster und seine Mitarbeiter werden theoretisch untersuchen, wie die Grünalge reagiert, wenn ihre "innere Uhr" verstellt wird. "Die innere Uhr des Einzellers lässt sich durch Eingriffe in die Gene verstellen", sagt Schuster. Die Aktivitäten des Einzellers werden über die Gene gesteuert, ergo können ausgeschaltete oder manipulierte Gene beispielsweise den Tag-Nacht-Rhythmus verändern. Auf der Grundlage experimenteller Ergebnisse der Gruppe von Prof. Mittag simulieren die Wissenschaftler um Schuster die Wechselbeziehungen der Gene von Chlamydomonas reinhardtii mit Hilfe von Computerprogrammen - ihre Ergebnisse werden von Prof. Mittag in der Laborpraxis überprüft, wodurch wiederum die Computersimulationen verbessert werden. So wollen die Botaniker der Universität Jena Gene verändern, die für den Stickstoff-Stoffwechsel zuständig sind. "Vielleicht können wir Chlamydomonas dazu bewegen, mehr Stickstoffkomponenten aufzunehmen", sagt Maria Mittag. Gelingt das, ließe sich die Alge einsetzen, um Stickstoff-belastete Böden zu entgiften. Denn der Einzeller kommt im Süßwasser und im feuchten Erdreich vor. Erkenntnisse aus dem aktuellen Projekt könnten sich zudem auf andere Pflanzen übertragen lassen.

Kontakte:
Prof. Dr. Maria Mittag
Institut für Allgemeine Botanik und Pflanzenphysiologie der Friedrich-Schiller-Universität Jena
Am Planetarium 1, 07743 Jena
Tel.: 03641 / 949201
E-Mail: M.Mittag[at]uni-jena.de
Prof. Dr. Stefan Schuster
Lehrstuhl für Bioinformatik der Friedrich-Schiller-Universität Jena
(Biologisch-Pharmazeutische Fakultät)
Ernst-Abbe-Platz 2, 07743 Jena
Tel.: 03641 / 949580
E-Mail: schuster[at]minet.uni-jena.de

Stephan Laudien | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics