Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eingesperrte Moleküle offenbaren ihre Thermodynamik: Bewegte Moleküle schreiben Buchstaben

26.02.2015

Wer Hochleistungsmaterialien für Gasspeicherung, thermische Isolierung oder Nanomaschinen entwickeln möchte, muss ihre thermischen Eigenschaften bis hinunter auf die molekulare Ebene verstehen. Doch die Thermodynamik, entwickelt vor 200 Jahren, um die Effizienz von Dampfmaschinen zu verbessern, betrachtet typischer Weise nur die Mittelwerte einer sehr großen Zahl von Molekülen. Ein Team von Wissenschaftlern hat nun eine Methode entwickelt, mit der gezielt die Thermodynamik einzelner Moleküle untersucht werden kann.

Auf der Suche nach Hochleistungsmaterialien für Anwendungen wie Gasspeicherung, thermische Isolierung oder Nanomaschinen ist es entscheidend, das thermische Verhalten der Materialien bis auf die Ebene einzelner Moleküle zu verstehen. Die klassische Thermodynamik mittelt allerdings über einen Zeitraum und eine große Anzahl von Molekülen. Ein Molekül kann in dieser Zeit im Raum fast unendlich viele Zustände annehmen. Die Untersuchung einzelner Moleküle ist so nahezu unmöglich.


Die Nanopore begrenzt die Bewegungsmöglichkeiten des eingefangenen Moleküls

Bild: C.-A. Palma / TUM

Forscher der Technischen Universität München (TUM) und der Universität Linköping (LIU) haben nun eine Methode entwickelt, mit der sie die Gleichgewichtsthermodynamik von Einzelmolekülen mit atomarer Auflösung bei unterschiedlichen Temperaturen untersuchen können. Die bahnbrechende Studie basiert auf zwei Säulen: Eine Technologie die es ermöglicht, Moleküle in zweidimensionalen Nanoporen einzuschließen und umfangreiche rechnerische Modellierungen.

Am Lehrstuhl für Molekulare Nanowissenschaften und chemische Physik von Grenzflächen des Physik-Departments der TU München, geleitet von Prof. Dr. Johannes V. Barth, entwickelte PD Dr. Florian Klappenberger eine Methode, um geordnete metall-organische Netzwerke auf einer Silberoberfläche zu erzeugen. Das Netzwerk bildet Nanoporen, die die Bewegungsfreiheit einzelner adsorbierter Moleküle in zwei Dimensionen drastisch beschränken. Mit einem Rastertunnelmikroskop konnten die Forscher die Bewegungen der Moleküle bei verschiedenen Temperaturen mit Sub-Nanometer-Auflösung vermessen.

Parallel zu den Experimenten bauten die Forscher ausgeklügelte Computermodelle auf, um die Temperaturabhängigkeit der Dynamik der eingefangenen Moleküle zu modellieren. "Mit Hilfe von Supercomputern gelang es uns, die Wechselwirkungen und die Energielandschaft der Bewegung der Moleküle zu beschreiben", sagt Jonas Björk von der Universität Linköping.

Beim Vergleich experimenteller und modellierter Daten erkannten die Wissenschaftler, dass sich unter bestimmten Bedingungen die integrale Theorie auf eine einfache Projektion der räumlichen Molekülpositionen reduzieren lässt. Dies ist ein Ansatz, der in der statistischen Mechanik häufig angewandt wird. Bisher war es aber unmöglich damit ein Experiment zu beschreiben, denn ohne Beschränkung durch den zweidimensionalen Käfig wären unendlich viele mögliche Molekülpositionen und Energien zu berücksichtigen.

„Es war sehr spannend, die zweidimensionalen Netzwerke zu nutzen, um die Zahl der verfügbaren Konfigurationen eines einzelnen Moleküls einzuschränken, ähnlich wie ein Chaperon es tut, wenn es ein Protein formt", sagt Dr. Carlos Andres-Palma, der Hauptautor der Studie. „In Analogie zur Biologie hat eine solche Form der Einbindung das Potenzial, daraus Sensoren, Nanomaschinen und möglicherweise Logik-Bausteine aufzubauen, die molekular kontrolliert werden können."

Mit ihrem Wissen über die charakteristischen Gleichgewichtskonfigurationen modifizierten die Forscher Nanoporen so, dass ein eingefangenes Molekül durch präzise Einstellung der Temperatur Buchstaben des Alphabets, wie L, I und U nachbilden konnte.

Die Forschung wurde durch Mittel des European Research Council (ERC, Advanced Grant MolArt) und des schwedischen Research Council gefördert. Das Swedish National Supercomputing Center stellt Supercomputing Ressourcen bereit. Die Arbeitsgruppe von Professor Barth ist Mitglied des Catalysis Research Center (CRC) der TUM.

Publikation:

Visualization and thermodynamic encoding of single-molecule partition function projections
Carlos-Andres Palma, Jonas Björk, Florian Klappenberger, Emmanuel Arras, Dirk Kühne, Sven Stafström, Johannes V. Barth
Nature communications, Feb 23, 2015 – DOI: 10.1038/ncomms7210 - Link: http://www.nature.com/ncomms/2015/150223/ncomms7210/full/ncomms7210.html

Kontakt:

Dr. Carlos Andres-Palma, PD Dr. Florian Klappenberger, Prof. Dr. Johannes V. Barth
Technische Universität München
Physik-Department (E20)
James Franck Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 12608 – E-Mail: e20office@ph.tum.de
Internet: http://www.e20.ph.tum.de

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zellen auf Wanderschaft: Falten in der Zellmembran liefern Material für nötige Auswölbungen
23.11.2017 | Westfälische Wilhelms-Universität Münster

nachricht Neues Verfahren zum Nachweis eines Tumormarkers in bösartigen Lymphomen
23.11.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungsnachrichten

Seminar „Leichtbau im Automobil- und Maschinenbau“ im Haus der Technik Berlin am 16. - 17. Januar 2018

23.11.2017 | Seminare Workshops

Biohausbau-Unternehmen Baufritz erhält von „ Capital“ die Auszeichnung „Beste Ausbilder Deutschlands“

23.11.2017 | Unternehmensmeldung