Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einfache Nervenzellen steuern die Schwimmtiefe von marinem Plankton

18.10.2011
Der Zilienschlag von Platynereis gibt Einblick in ein Urstadium der Evolution des Nervensystems

Die Larven des Ringelwurms Platynereis schwimmen als Teil des Planktons frei im Meer. Sie bewegen sich mit Hilfe von Zilien fort, tausenden von Flimmerhärchen, die sich bandförmig am Körper der Larve entlangziehen und koordinierte Schlagbewegungen ausführen. Je nach Umgebungsbedingungen schwimmen die Larven in bevorzugten Wassertiefen.


Lichtmikroskopische Aufnahme der Larve des marinen Ringelwurms Platynereis. Die Larven schwimmen im Meer angetrieben durch ein schlagendes Band von Flimmerhärchen (Zilienband). Markus Conzelmann, Arbeitsgruppe Gáspár Jékely, Max-Planck-Institut für Entwicklungsbiologie


Im Nervensystem von Platynereis (weiß) wurden zahlreiche verschiedene Neuropeptide entdeckt. Diese sind in unterschiedlichen Farben dargestellt. Albina Asadulina und Markus Conzelmann, Arbeitsgruppe Gáspár Jékely, Max-Planck-Institut für Entwicklungsbiologie

Forscher des Max-Planck-Instituts für Entwicklungsbiologie in Tübingen haben nun eine Reihe von Signalstoffen identifiziert, die über das Nervensystem die Schwimmtiefe der Larven regulieren. Diese Stoffe haben Einfluss auf die Zilienbewegung und können die Larve in ihrer optimalen Wassertiefe halten. Grundlage dafür sind einfache Schaltkreise der Nervenzellen, die nach Einschätzung der Forscher ein Urstadium des Nervensystems widerspiegeln.

Viele Tiere bewegen sich mit Muskeln fort. Kleine Meerestiere nutzen jedoch oft Zilienhärchen zum Schwimmen oder Kriechen. Dieser Fortbewegungsart ist evolutionär wesentlich älter als die Fortbewegung mit Muskeln und ist bei Meeresplankton sehr weit verbreitet. Die Larvenstadien vieler wirbelloser Meerestiere sind Teil dieses Planktons, zu dem neben den Ringelwurmlarven beispielsweise auch Larven von Schnecken, Muscheln und Seesternen gehören. „Wie die Nervensysteme des Meeresplanktons Zilienbewegungen regulieren, ist immer noch weitgehend unbekannt, da intensiv erforschte Modellorganismen wie die Fruchtfliege Muskeln als Basis ihrer Fortbewegung benutzen“, sagt Gáspár Jékely. Mit seiner Arbeitsgruppe am Max-Planck-Institut für Entwicklungsbiologie hat er in Zusammenarbeit mit Thomas A. Münch vom Werner-Reichardt-Zentrum für Integrative Neurowissenschaften in Tübingen das Nervensystem der Larven des Meeresringelwurms Platynereis dumerilii näher untersucht.

Das Zilienband dient den Platynereis-Larven im Meerwasser als Schwimmmotor: Bei schnellem dauerhaften Schlagen der Zilien schwimmen die Larven aufwärts, stoppt die Schlagbewegung, sinken sie. Diese Larven nehmen verschiedene Umgebungsbedingungen wahr, beispielsweise reagieren sie auf Schwankungen der Temperatur, des Lichteinfalls und des Nahrungsangebots und ändern entsprechend ihre Bewegung in der Wassersäule. Um mehr über die Regulation dieses Verhaltens zu erfahren, analysierten die Tübinger Forscher die Gene von Platynereis. Sie entdeckten mehrere neuronale Signalstoffe, sogenannte Neuropeptide, in ihren Gen-Datenbanken. Außerdem fanden die Forscher heraus, dass diese Neuropeptide in einzelnen sensorischen Nervenzellen der Larve produziert und direkt am Zilienband freigesetzt werden. Die Forscher zogen daraus den Schluss, dass diese Nervenzellen Sinnesinformationen direkt an die Zilien weiterleiten. Einige dieser Neuropeptide haben Einfluss auf die Schlagfrequenz der Zilien, andere auch auf die Häufigkeit des Stillstands der Zilien. Dadurch konnten die Forscher die Auf- und Abwärtsbewegungen freischwimmender Larven steuern und deren Schwimmtiefe in der Wassersäule ändern.

„Wir haben dabei entdeckt, dass die verantwortlichen Nervenschaltkreise ungewöhnlich einfach aufgebaut sind. Die sensorischen Nervenzellen haben nämlich zugleich auch motorische Funktion, das heißt sie geben den Impuls zur Bewegung direkt an das Zilienband weiter“, berichtet Markus Conzelmann vom Max-Planck-Institut für Entwicklungsbiologie, der Erstautor der Studie. Von der nervösen Steuerung der Muskelbewegung seien solche einfachen Verschaltungen überhaupt nicht bekannt. „Erstaunlich war außerdem, dass wir nicht nur ein Neuropeptid gefunden haben, das an einem solch einfachen Schaltkreis beteiligt ist, sondern gleich elf verschiedene.“

Nach Ansicht der Wissenschaftler liefert diese Entdeckung einen Einblick, wie Nervensysteme in einem frühen Stadium der Evolution ausgesehen und funktioniert haben könnten. Darüber hinaus könnten diese Erkenntnisse auch für andere Bereiche der Meeresbiologie von großem Interesse sein: „Nun haben wir ein geeignetes Modell dafür, die Regulation der Schwimmtiefe im Meeresplankton weitergehend zu erforschen. Da das Schwimmverhalten von Plankton für die Verbreitung und das Überleben tausender Meerestiere ausschlaggebend ist, kann unsere Forschung auch für die Meeresökologie relevant sein“, erklärt Gáspár Jékely. Er möchte in weiteren Studien untersuchen, welche Nervenzellen genau die einzelnen Sinnesinformationen wie Wasserdruck, Temperatur oder Salzgehalt wahrnehmen.

Originalpublikation:
Markus Conzelmann, Sarah-Lena Offenburger, Albina Asadulina, Timea Keller, Thomas A. Münch and Gáspár Jékely: Neuropeptides regulate swimming depth of Platynereis larvae. PNAS, doi: 10.1073/pnas.1109085108
Ansprechpartner:
Gáspár Jékely
Max-Planck-Institut für Entwicklungsbiologie
Tel.: 07071 601- 1310
E-Mail: gaspar.jekely(at)tuebingen.mpg.de

Dagmar Sigurdardottir | Max-Planck-Institut
Weitere Informationen:
http://www.tuebingen.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften