Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einfach mal (Gene) abschalten: Erstmals Funktionsanalyse nicht-proteinkodierender Gene möglich

22.08.2011
Unser Erbgut enthält zahlreiche Gene, die keine Bauanleitung für Proteine tragen. Viele davon werden in Krebszellen besonders häufig abgelesen.

Wissenschaftler im Deutschen Krebsforschungszentrum und im Universitätsklinikum Heidelberg entdeckten erstmals einen Weg, um die Funktion dieser Gene in Zellen zu überprüfen.

Sie fügten gezielt Signale in die Gensequenz ein, die bewirken, dass die abgelesenen RNA-Moleküle sofort abgebaut werden. Anschließend suchten die Forscher nach Veränderungen der Zellbiologie um daraus abzuleiten, ob und wie die nicht-proteinkodierenden Gene an der Krebsentstehung beteiligt sind.

Bei der Untersuchung von Krebszellen entdecken Forscher zahlreiche molekulare Auffälligkeiten: Bestimmte RNA-Moleküle liegen in großer Anzahl vor, bestimmte Gene sind überaktiv. Haben diese Auffälligkeiten einen Bezug zum Krebs? Treiben sie das Zellwachstum an? Schalten sie Wachstumsbremsen aus oder aber handelt es sich um eine bloße Laune der Natur? Wichtige Hinweise auf diese Fragen erhalten Wissenschaftler aus so genannten Funktionsverlust-Untersuchungen: Die Forscher schalten das betroffene Gen in lebenden Zellen oder ganzen Organismen aus und beobachten anschließend, was sich im Stoffwechsel, in der Physiologie oder am Verhalten der Zellen ändert, ob also bestimmte zelluläre Funktionen ausfallen.

„Es fehlte bisher aber eine Methode, mit der wir auch solche Gene gezielt ausschalten können, die keine Bauanleitung für Proteine tragen“, sagt Dr. Sven Diederichs, der eine Nachwuchsgruppe im Deutschen Krebsforschungszentrum und im Institut für Pathologie der Universität Heidelberg leitet. Mit seinem Team entwickelte der Molekularbiologe nun ein neues Verfahren, um solche nicht-proteinkodierenden Gene gezielt zum Schweigen zu bringen und so ihre Funktion zu bestimmen. „Gerade bei vielen Krebserkrankungen finden wir, dass bestimmte nicht-proteinkodierende Gene besonders aktiv sind. Wir wollen deshalb verstehen, was die von diesen Genen abgelesenen RNA-Moleküle in den Tumorzellen bewirken.“

Diederichs und sein Team nutzen für ihre Methode die Zink-Finger-Nukleasen, synthetische Eiweißmoleküle, die das Erbgut an genau definierten Stellen zerschneiden, so dass die Wissenschaftler damit gezielt Gene ansteuern und durchtrennen können. Nach dem Durchtrennen setzen Reparaturmechanismen der Zelle die beiden Enden zwar wieder zusammen. Bei proteinkodierenden Genen funktioniert das Abschalten trotzdem gut: Meist flicken die Reparaturenzyme nicht präzise und bauen kleine Fehler ein. Das zerstört die Proteininformation, so dass die Eiweiße nicht mehr gebildet werden können.

Bei nicht-proteinkodierende Genen spielen jedoch solche kleinen Fehler keine Rolle, so dass das reine Zerschneiden nicht zum gewünschten Ergebnis führt: Nach dem Flicken entsteht einfach wieder ein funktionsfähiges Gen, von dem RNA-Moleküle abgelesen werden. Hier behalfen sich die Heidelberger Forscher mit einem Trick: Die Reparatureiweiße können beim Flicken der beiden Enden auch kleine DNA-Abschnitte einbauen. Also fügten die Molekularbiologen an der durchtrennten Stelle eine Signalsequenz ein. Sie sorgt dafür, dass das von diesem Gen abgeschriebenen RNA-Molekül sogleich abgebaut wird und daher nicht für zelluläre Funktionen zur Verfügung steht. Die daraus resultierenden Veränderungen in der Zellbiologie lassen sich anschließend umfassend analysieren.

„Wir haben jetzt erstmals die Möglichkeit, die nicht-proteinkodierenden Gene vollständig abzuschalten und so deren molekulare und zelluläre Funktionen zu untersuchen“, erklärt Sven Diederichs das Ziel seines Forschungsansatzes. „Es ist sehr wahrscheinlich, dass diese Gene bei der Krebsentstehung eine wichtige Rolle spielen. Es ist sicher kein Zufall, dass sie ausgerechnet in Tumorzellen so aktiv sind.“

Tony Gutschner, Marion Baas und Sven Diederichs: Non-coding RNA Gene Silencing through genomic integration of RNA destabilizing elements using Zinc Finger Nucleases. Genome Research 2011, Doi:10.1101/gr.122358.111

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 2.500 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1000 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Ansätze, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Daneben klären die Mitarbeiterinnen und Mitarbeiter des Krebsinformationsdienstes (KID) Betroffene, Angehörige und interessierte Bürger über die Volkskrankheit Krebs auf. Das Zentrum wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren.

Dr. Stefanie Seltmann | idw
Weitere Informationen:
http://www.dkfz.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise