Eine Frage des Nachschubs

Schematische Darstellung der AMPA-Rezeptor-Biogenese im Endoplasmatischen Retikulum mit anschließendem Transport in die Synapsen. Rechts oben: Stammbaum einer der entdeckten FRRS1l Familien. Grafik: Bernd Fakler

Dr. Aline Brechet, Dr. Jochen Schwenk und Prof. Dr. Bernd Fakler haben in Zusammenarbeiten mit Genetikerinnen und Genetikern der Universitäten Leipzig und Paris/Frankreich erstmals die große Bedeutung der Prozesse des molekularen Zusammenbaus – der Biogenese – der AMPA-Rezeptoren für die Leistungsfähigkeit des menschlichen Gehirns aufgedeckt.

AMPA-Rezeptoren, die wichtigsten Neurotransmitter-Rezeptoren des Gehirns, sind Multiproteinkomplexe, die im Zellinneren zusammengebaut und dann in die Synapsen von Nervenzellen transportiert werden, wo sie für die schnelle Übertragung und Verarbeitung von Informationen verantwortlich sind.

Ist der Zusammenbau der Rezeptorkomplexe infolge von genetischen Mutationen gestört, führt dies zu schweren Krankheitsbildern mit stark eingeschränktem Intellekt und epileptischen Anfällen. Die in der Fachzeitschrift „Nature Communications“ veröffentlichten Ergebnisse zeigen einen unerwarteten Mechanismus zur Kontrolle der Leistungsfähigkeit des menschlichen Gehirns auf.

Unter Anwendung hochauflösender Proteomanalyse-Techniken haben die Wissenschaftlerinnen und Wissenschaftler eine Population von AMPA-Rezeptoren in Hirnmembranen identifiziert, die sich in ihrem Aufbau grundsätzlich von den AMPA-Rezeptoren in den Synapsen unterscheiden.

Diese neu entdeckten Komplexe kommen, wie die Forscherinnen und Forscher weiter herausfanden, nur im Endoplasmatischen Retikulum vor und sind eine Art Übergangsstufe in der Biogenese der synaptischen Rezeptorkomplexe. Wird die Ausbildung dieser Übergangsstufe im Tiermodell experimentell durch Viren verhindert, nimmt die Zahl der AMPA-Rezeptoren in der Synapse stark ab. Folge ist eine gestörte Informationsübertragung zwischen den Neuronen.

Beim Menschen kann eine solche Störung der Biogenese von AMPA-Rezeptoren durch Mutationen in der Hauptuntereinheit der Übergangskomplexe, dem FRRS1l Protein, hervorgerufen werden. Solche Mutationen fanden die Forscher in drei Familien, in denen die homozygot – mit Veränderung im väterlich und mütterlich vererbten Gen – betroffenen Patienten an schwersten Funktionsstörungen des Gehirns litten:

Alle Patienten zeigten stark eingeschränkte intellektuelle Fähigkeiten, verzögerte oder fehlende Sprachentwicklung und epileptische Anfälle. Es wurden bei den Patienten jedoch keinerlei Veränderungen in den Hirnstrukturen festgestellt. Dies spricht nach Ansicht der Wissenschaftler dafür, dass die Krankheit durch die Funktionsdefizite, die aus der reduzierten AMPA-Rezeptor-Biogenese resultieren, verursacht wird.

Schon 2012 zeigte die Gruppe um Fakler, dass sich AMPA-Rezeptoren in den Nervenzellen des Gehirns aus einem Sortiment von mehr als 30 verschiedenen Proteinen aufbauen. Es enthält eine ganze Reihe von Proteinen, deren Funktionen, wie im Falle des FRRS1l Proteins, bislang unbekannt sind oder waren. Mit ihrer aktuellen Arbeit zeigen die Wissenschaftler, wie wichtig gerade diese neu entdeckten Bausteine und die Erforschung ihrer molekularen Funktionsmechanismen für das Verständnis der höheren Hirnfunktionen sind.

Die Physiologen Jochen Schwenk und Bernd Fakler sowie die Neurobiologin Aline Brechet forschen am Institut für Physiologie, Schwenk und Fakler arbeiten zudem am Exzellenzcluster BIOSS Centre for Biological Signalling Studies der Universität Freiburg.

Originalpublikation:
AMPA-receptor specific biogenesis complexes control synaptic transmission and intellectual ability. A. Brechet, R. Buchert, J. Schwenk, S. Boudkkazi, G. Zolles, K. Siquier-Pernet, I. Schaber, W. Bildl, A. Saadi, C. Bole-Feysot, P. Nitschke, A. Reis, H. Sticht, N. Al-Sanna’a, A. Rolfs, A. Kulik, U. Schulte, L. Colleaux, R. Abou Jamra and B. Fakler (2017) Nature Communications 10.1038/NCOMMS15910

Kontakt:
Prof. Dr. Bernd Fakler
Institut für Physiologie, Abteilung II / BIOSS Centre for Biological Signalling Studies
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-5175
E-Mail: bernd.fakler@physiologie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2017/eine-frage-des-nachschubs

Media Contact

Rudolf-Werner Dreier Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Erstmals 6G-Mobilfunk in Alpen getestet

Forschende der Universität Stuttgart erzielen leistungsstärkste Verbindung. Notrufe selbst in entlegenen Gegenden absetzen und dabei hohe Datenmengen in Echtzeit übertragen? Das soll möglich werden mit der sechsten Mobilfunkgeneration – kurz…

Neues Sensornetzwerk registriert ungewöhnliches Schwarmbeben im Vogtland

Das soeben fertig installierte Überwachungsnetz aus seismischen Sensoren in Bohrlöchern zeichnete Tausende Erdbebensignale auf – ein einzigartiger Datensatz zur Erforschung der Ursache von Schwarmbeben. Seit dem 20. März registriert ein…

Bestandsmanagement optimieren

Crateflow ermöglicht präzise KI-basierte Nachfrageprognosen. Eine zentrale Herausforderung für Unternehmen liegt darin, Über- und Unterbestände zu kontrollieren und Lieferketten störungsresistent zu gestalten. Dabei helfen Nachfrage-Prognosen, die Faktoren wie Lagerbestände, Bestellmengen,…

Partner & Förderer