Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einblicke in die Nervenzellaktivität tiefer Schichten der Großhirnrinde

13.07.2011
Max-Planck-Wissenschaftler beobachten die Informationsverarbeitung im Gehirn mithilfe einer neuen Methode der Multi-Photonen-Fluoreszenzmikroskopie

Objekte, die wir sehen oder berühren, werden durch komplexe Interaktionen der Nervenzellen im Gehirn in eine Wahrnehmung umgesetzt. Wie die Nervenzellen bei diesen Prozessen oder auch bei einer Entscheidungsfindung räumlich und zeitlich aktiv werden, ist noch nicht aufgeklärt. Wissenschaftler an den Max-Planck-Instituten für biologische Kybernetik in Tübingen und für Medizinische Forschung in Heidelberg haben nun eine neue Methode entwickelt, mit der sie die Aktivität von Nervenzellen in den tiefsten Schichten der Großhirnrinde beobachten können. Dies war bisher nicht möglich.


Links ist der Querschnitt eines Säugetiergehirns zu sehen. Beide Gehirnhälften sowie die äußerste, nervenzellreiche Großhirnrinde (Kortex) sind zu erkennen. Der Kortex besteht aus sechs Schichten. Rechts sind Gehirnzellen mit einem genetisch kodierten Fluoreszenzfarbstoff markiert. Bei steigender Aktivität einer Nervenzelle leuchtet auch der Farbstoff heller. Rechts sind Nervenzellen in der L5 Schicht zu erkennen. Sie wurde mit nicht-invasiven Methoden am lebenden Tier aufgenommen. Bild: Wolfgang Mittmann, Jason Kerr / Max-Planck-Institut

Die Großhirnrinde (Kortex) ist die äußerste, nervenzellreiche Lage im Säugetiergehirn. Er spielt eine zentrale Rolle beim Erinnerungsvermögen und dem Bewusstsein und nimmt auch die Sinneseindrücke von äußeren Reizen, wie Bildern, Berührungen oder Gerüchen auf und verarbeitet sie weiter. Wie genau diese Informationsverarbeitung funktioniert, ist jedoch noch unbekannt. Jason Kerr, Leiter der Arbeitsgruppe „Bildgebung Neuronaler Populationen“ am Max-Planck-Institut für biologische Kybernetik in Tübingen, und seine Teamkollegen, Wolfgang Mittmann, Damian Wallace und Uwe Czubayko, haben es nun geschafft, die Aktivität vieler Nervenzellen gleichzeitig abzubilden. Die Forscher drangen dabei doppelt so tief wie bisher in den Kortex ein und konnten die Darstellung bis zur einzelnen Zelle auflösen. In Kooperation mit Winfried Denk, Direktor der Abteilung „Biomedizinische Optik“ am Max-Planck-Institut für medizinische Forschung in Heidelberg, und Wissenschaftlern des Howard Hughes Medical Institute in Ashburn, Virginia haben sie die Nervenzellaktivität in der vorletzten der sechs Kortexschichten, der L5-Schicht, in lebenden Nagern untersucht.

Bisher war es nur möglich, Zellen im oberen Drittel der Großhirnrinde zu untersuchen – in den Schichten L2 und L3. Tiefere Schichten konnten nur mithilfe von Elektroden oder anderen invasiven Methoden untersucht werden. Die Max-Planck-Wissenschaftler haben nun eine Methode weiter entwickelt, mit der sie bis zu einem Millimeter unter der kortikalen Oberfläche genau sehen können, welche Zelle bei einem Reiz aktiv ist und, was noch wichtiger ist, welche Zelle bei einem Reiz nicht reagiert. „Wir markieren die interessanten Nervenzellen mithilfe eines genetisch kodierten Aktivitätsreporters, eines Fluoreszenzfarbstoffs, um die Aktivität vieler Zellen gleichzeitig untersuchen zu können“, erklärt Jason Kerr. Bei steigender Aktivität einer Nervenzelle leuchtet auch der Farbstoff heller. Jason Kerr und sein Team kombinierten diese Fluoreszenzmarkierung mit einer speziellen Methode der Multi-Photonen-Mikroskopie (regenerative amplification multiphoton microscopy – RAMM). Auf diese Weise können sie bis in die tiefen Schichten L5a und L5b der Großhirnrinde sowohl spontane als auch durch Reize ausgelöste Reaktionen der Nervenzellnetzwerke aufnehmen und quantifizieren.

Ziel der Forschung ist, die Zellaktivität von Nervenzellnetzwerken in der ganzen Großhirnrinde, von Schicht 6 bis 1 zu dokumentieren. Die neu entwickelte Methode soll daraufhin in Experimenten mit Tieren eingesetzt werden, die gelernt haben, verschiedene Objekte zu unterscheiden. Außerdem wollen die Forscher untersuchen, ob sich die tieferen Schichten des Großhirns während eines Lernprozesses in ähnlicher Weise neu organisieren wie die oberen Schichten. Die Forscher erhoffen sich insgesamt neue Einblicke in die Steuerungskreise im Großhirn wacher Tiere.

Originalpublikation:
Wolfgang Mittmann, Damian J Wallace, Uwe Czubayko, Jan T Herb, Andreas T Schaefer, Loren L Looger, Winfried Denk & Jason N D Kerr. (2011) Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo. Nature Neuroscience, doi:10.1038/nn.2879
Ansprechpartner:
Jason Kerr
Tel.: +49 7071 601-1721
E-Mail: jason@tuebingen.mpg.de
Stephanie Bertenbreiter (Presse- & Öffentlichkeitsarbeit)
Tel.: +49 7071 601-472
E-Mail: presse@tuebingen.mpg.de
Das Max-Planck-Institut für biologische Kybernetik forscht an der Aufklärung von kognitiven Prozessen auf experimentellem, theoretischem und methodischem Gebiet. Es beschäftigt rund 300 Mitarbeiterinnen und Mitarbeiter aus über 40 Ländern und hat seinen Sitz auf dem Max-Planck-Campus in Tübingen. Das MPI für biologische Kybernetik ist eines der 80 Institute und Forschungseinrichtungen der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Dagmar Sigurdardottir | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de
http://tuebingen.mpg.de/startseite/detail/einblicke-in-die-nervenzellaktivitaet-tiefer-schichten-der-grosshirnrinde.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Hemmung von microRNA-29 schützt vor Herzfibrosen
20.11.2017 | Technische Universität München

nachricht Satellitenbilder zur Erfassung von Biodiversität nur bedingt tauglich
20.11.2017 | Helmholtz-Zentrum für Umweltforschung - UFZ

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

500 Kommunikatoren zu Gast in Braunschweig

20.11.2017 | Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Künstliche neuronale Netze: 5-Achs-Fräsbearbeitung lernt, sich selbst zu optimieren

20.11.2017 | Informationstechnologie

Tonmineral bewässert Erdmantel von innen

20.11.2017 | Geowissenschaften

Hemmung von microRNA-29 schützt vor Herzfibrosen

20.11.2017 | Biowissenschaften Chemie