Einblicke in die Genetik der Immunantwort

Die Medizin kennt inzwischen eine ganze Reihe von Genvarianten, die die Funktion einzelner zellulärer Prozesse beeinträchtigen. Oft handelt es sich dabei nur um winzige Abweichungen, so genannte Einzelnukleotid-Polymorphismen (SNP, für englisch Single Nucleotide Polymorphism). Diese SNPs sind über das gesamte Erbgut verteilt. Sie machen den Hauptteil der genetischen Variabilität aus und sind ein wesentlicher Grund dafür, warum Individuen unterschiedlich sind.

Die genaue Funktion der meisten SNPs ist jedoch noch völlig unbekannt. Man kennt zwar mittlerweile eine Reihe von „Risiko-SNPs“, die bei bestimmten Erkrankungen gehäuft vorkommen. Die zugrunde liegende Störung im Prozessablauf einer Zelle ist allein daraus jedoch nicht ersichtlich. Es ist etwa so, als würde ein Mechaniker die zerlegten Bestandteile einer Maschine betrachten.

Er sieht zwar, dass ein Zahnrädchen kaputt ist; er weiß aber nicht, wo es hingehört und was es dort genau macht. Da viele Erkrankungen eng mit dem Immunsystem verknüpft sind, wäre jedoch eine genaue Zuordnung einzelner SNPs zu Funktionen in Immunzellen wünschenswert. Damit würde man zum einen die Ursache dieser Krankheiten besser verstehen. Außerdem wäre es so leichter möglich, zielgerichtete Medikamente zu entwickeln.

Dank einer neuen Methode sind die Wissenschaftler der Universität Bonn der Antwort auf diese Frage ein Stück näher gekommen. Die Forscher haben Abwehrzellen aus dem Blut von knapp 140 Versuchspersonen isoliert, so genannte Monozyten. Monozyten verfügen über Sensoren, die typische Bestandteile von Krankheitserregern erkennen und dann Alarm schlagen. Durch ihre wichtige Funktion sind Monozyten aber auch häufig an der Entstehung von Krankheiten beteiligt, bei denen es zu einer fehlgesteuerten Entzündungsreaktion kommt.

Alarmstimmung in der Abwehrzelle

Ein wichtiger Sensor in Monozyten ist der TLR4-Rezeptor. Er reagiert auf komplex aufgebaute Zucker-Fett-Verbindungen, die in der Wand bestimmter Bakterien vorkommen. Die Immunologen gaben diese bakteriellen Verbindungen zu ihren Monozyten.

Die Abwehrzellen schlugen daraufhin Alarm und aktivierten eine ganze Reihe von Genen. Die Bonner Forscher verglichen nun die aktivierten Gene vor und nach Zugabe der Bakterien-Bestandteile. „Wir konnten so genau erkennen, welche Erbanlagen im Alarmfall in den Monozyten aktiviert werden“, erläutert Professor Dr. Veit Hornung vom Institut für Molekulare Medizin der Universität Bonn. Bildlich gesprochen: Der Mechaniker kennt nun die Zahnräder, die dafür sorgen, dass seine Maschine funktioniert. Er weiß aber noch immer nicht, welche Funktion das einzelne Rädchen übernimmt oder was passiert, wenn es kaputt geht. Um diese Frage zu beantworten, suchten die Wissenschaftler im Erbgut ihrer 140 Probanden nach SNPs, die einen direkten Einfluss auf die Genaktivität in den betroffenen Abwehrzellen hatten.

„Wir konnten eine ganze Reihe von SNPs identifizieren, die die Immunantwort steuern“, erklärt Privatdozent Dr. Johannes Schumacher, Humangenetiker an der Universität Bonn. „So gibt es beispielsweise einen SNP, der an der Steuerung des Immunsystems beteiligt ist und von dem bereits bekannt war, dass er das Risiko erhöht, an einer primär biliären Zirrhose zu erkranken. Dabei handelt es sich um eine schwere Autoimmunerkrankung der Leber. Dank unserer Arbeit können wir jetzt sagen, was dieser SNP in den Monozyten genau bewirkt und welche Genaktivitäten er beeinflusst.“

Kooperation zwischen Immunologie und Humangenetik

Mit ausschlaggebend für den Erfolg ist das besondere Forschungsprofil der Uni Bonn: Immunologie und Humangenetik sind zwei herausragende Schwerpunkte der Rheinischen Friedrich-Wilhelms-Universität. Wichtiger Partner war zudem das Max-Planck-Institut für Psychiatrie in München.

„Die Gemeinschaftsarbeit erlaubt einen tiefen Einblick in die Funktionsweise des angeborenen Immunsystems“, macht Dr. Sarah Kim deutlich, die sowohl als Immunologin und Humangenetikerin an der Universität Bonn forscht. Die Wissenschaftler hoffen, dass sich ihre Erkenntnisse irgendwann auch in der medizinischen Praxis niederschlagen. Prof. Hornung: „Die funktionelle Kartierung des Erbguts ist eine wichtige Strategie für die Entwicklung neuer Medikamente.“

Publikation: Sarah Kim et. al.: Characterizing the genetic basis of innate immune response in TLR4-activated human monocytes; Nature communications; doi: 10.1038/ncomms6236

Kontakt:

Priv.-Doz. Dr. Johannes Schumacher
Institut für Humangenetik, Universität Bonn
Telefon: 0228/287-51028
E-Mail: johannes.schumacher@uni-bonn.de

Prof. Dr. Veit Hornung
Institut für Molekulare Medizin, Universität Bonn
Telefon: 0228/287-51200
E-Mail: veit.hornung@uni-bonn.de

Media Contact

Johannes Seiler idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-bonn.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer