Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einblick in die Kinderstube der Proteine

07.06.2013
Proteine transportieren Sauerstoff, bekämpfen Krankheitserreger oder dienen als Baustoff für Muskeln und Sehnen. Damit sie ihre Funktion erfüllen können, müssen sie eine komplexe räumliche Struktur einnehmen. Dabei werden sie von Helferproteinen, den Chaperons, unterstützt.
Einem internationalen Wissenschaftlerteam ist es erstmals gelungen, ein Zwischenstadium der Faltung im Hohlraum des weitverbreiteten Chaperons GroEL zu analysieren. Die Ergebnisse wurden in der renommierten Fachzeitschrift Cell veröffentlicht.

Proteine sind als lange Ketten aufgebaut, die in der Regel aus einigen Hundert aneinandergereihten Aminosäurebausteinen bestehen. Wie sie es schaffen, innerhalb von Sekundenbruchteilen die korrekte Gestalt anzunehmen, ist immer noch ein großes Rätsel. Fehlfaltungen können schwerwiegende Folgen haben, Mediziner führen heute ein breites Spektrum unterschiedlicher Erkrankungen auf missgestaltete Proteine zurück, neben Krebs, Diabetes oder Arterienverkalkung auch viele neurodegenerative Erkrankungen wie Alzheimer oder Parkinson.

Proteinfaltung im geschlossenen GroEL-GroES-Komplex: Die blauen Pfeile zeigen die Bewegung des umhüllenden Helferproteins während der Faltung des Substratproteins (rot) in seinem Innern an. Quelle: Forschungszentrum Jülich

Nicht alle Proteine sind in der Lage, sich selbstständig korrekt im Raum zu verknäueln. Helferproteine, Chaperons – so die französischstämmige Bezeichnung für „Anstandsdame“ – unterstützen sie dabei, bestimmte Abschnitte der Aminosäurekette zu charakteristischen, spiralförmigen Helices zusammenzurollen oder in ziehharmonikaförmige Faltblatt-Strukturen zu legen. Auf diese Weise wird ein Großteil der hydrophoben, also der wasserabweisenden, Enden ins Molekülinnere gekehrt. So wird verhindert, dass sich die Proteine über diese hydrophoben Enden vorzeitig miteinander verbinden und zusammenklumpen.

GroEL ist eines der am weitesten verbreiteten Chaperons, das in fast allen bisher analysierten Bakterienarten vorkommt. Nahe Verwandte sorgen auch in Mehrzellern dafür, unfertige Proteine in die richtige Form zu bringen. Das Riesenmolekül besteht aus zwei Ringen, die zusammen eine Art Röhre bilden, in der sich das unfertige Proteinsubstrat ungestört zusammenlegen kann. Um die Aushöhlung während des Faltvorgangs nach außen abzudichten, kommt ein weiteres Helferprotein hinzu, das Co-Chaperon GroES, das sich wie ein Deckel auf die Öffnung legt.

„Bislang war unbekannt, welche molekularen Vorgänge für diese Verkapselung verantwortlich sind und wie das Helferprotein die Proteinfaltung im Innern konkret beeinflusst. Die neuen Erkenntnisse könnten dazu beitragen, diese Fragen besser zu verstehen“, freut sich Prof. Dieter Willbold, Leiter des Jülicher Forschungsbereichs Strukturbiochemie am Institute of Complex Systems (ICS-6), über die Ergebnisse aus seinem Institutsbereich. Die elektronenmikroskopischen Untersuchungen zeigen erstmals, an welcher Stelle ein noch unvollständig gefaltetes Protein andockt, wenn sich der Deckel des GroEL-GroES-Komplexes schließt.

„Wir konnten nachweisen, dass die Anbindung des Proteins die symmetrische Anordnung der Untereinheiten zerstört, aus denen GroEL zusammengesetzt ist“, erläutert Jun.-Prof. Gunnar Schröder, der die in Cell erschienene Studie gemeinsam mit Forschern aus den USA verfasst hat. Wissenschaftler hatten lange nach einem Mechanismus gesucht, der es GroEL ermöglicht, sowohl das unfertige Proteinsubstrat in seinem Innern als auch den „molekularen Deckel“ GroES anzubinden. „Es hat sich gezeigt, dass die Proteinfaltung durch eine Formänderung von GroEL eingeleitet wird“, so Schröder, Leiter der am ICS-6 angesiedelten Jülicher Nachwuchsgruppe Computational Structural Biology. Durch die Verformung vergrößert sich wiederum der Hohlraum im Innern des Helferproteins – möglicherweise, um mehr Platz für die Proteinfaltung zu schaffen.

Zur Untersuchung der Proteinstruktur kam die sogenannte Cryo-Elektronenmikroskopie zum Einsatz. Die Methode bietet den Vorteil, dass Proteine oder Viren nur verhältnismäßig einfach mit flüssigem Ethan heruntergekühlt werden müssen. Nachteil: Die erzielbare Auflösung von etwas weniger als einem Nanometer reicht in vielen Fällen nicht aus, um die atomare Struktur der untersuchten Makromoleküle zuverlässig zu rekonstruieren. Bei der Auswertung der Daten setzten die Wissenschaftler daher auf ein neues Korrekturverfahren, das Gunnar Schröder und sein Jülicher Kollege Benjamin Falkner wenige Wochen zuvor in der Fachzeitschrift PNAS vorgestellt hatten.

Das zugrunde liegende Kreuzvalidierungsverfahren ermöglicht es, die mit dem Elektronenmikroskop gewonnenen Daten mit bereits bekannten Informationen über die Molekülstruktur abzugleichen. Das Verfahren ist nicht ganz neu. Es hat sich seit über 20 Jahren in der Röntgenstrukturanalyse bewährt, mit der sich atomare Strukturen von deutlich höherer Qualität bestimmen lassen. Die Untersuchung mit Röntgenstrahlung ist allerdings auf Kristallgitterstrukturen beschränkt. Für die Versuche müssen daher zunächst Kristalle aus Proteinen herangezüchtet werden – ein schwieriges, oft auch unmögliches Unterfangen, das bei der Elektronenmikroskopie entfällt.


Originalpublikationen
Dong-Hua Chen, Damian Madan, Jeremy Weaver, Zong Lin, Gunnar F. Schröder, Wah Chiu, Hays S. Rye: Visualizing GroEL/ES in the Act of Encapsulating a Folding Protein. Cell 153, 1354–1365, June 6, 2013.

http://www.sciencedirect.com/science/article/pii/S009286741300528X

Benjamin Falkner, Gunnar F. Schröder: Cross-validation in cryo-EM–based structural modeling. PNAS 2013 (published ahead of print: May 14, 2013) DOI:10.1073/pnas.1119041110
Abstract: http://www.pnas.org/content/early/2013/05/14/1119041110.abstract

Weitere Informationen
Nachwuchsgruppe Computational Structural Biology: http://www.schroderlab.org/research.html
Institute of Complex Systems, Bereich Strukturbiochemie (ICS-6):
http://www.fz-juelich.de/ics/ics-6/

Ansprechpartner
Jun.-Prof. Gunnar F. Schröder, Institute of Complex Systems, Bereich Strukturbiochemie (ICS-6)
Tel. 02461 61-3259
gu.schroeder@fz-juelich.de

Pressekontakt:
Erhard Zeiss
Tel. 02461 61-1841
e.zeiss@fz-juelich.de

Erhard Zeiss | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten