Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einblick ins geschlossene Enzym

26.06.2017

Forscher der Universität Konstanz und der Umeå University ermitteln Strukturmodell des Enzyms Adenylat-Kinase in geschlossenem Zustand

Für den Energiehaushalt der Zelle spielt das Enzym Adenylat-Kinase eine zentrale Rolle: Es beschleunigt den biochemischen Prozess, über den Energie für die Zelle gespeichert oder freigesetzt wird. Das Enzym wechselt beständig zwischen einer offenen und einer geschlossenen Form, es öffnet und schließt sich.


Darstellung der Elektronendichte an der ausgebildeten Disulfidbrücke (gelb, zwischen C56 und C163) und in deren Nachbarschaft.

Prof. Dr. Michael Kovermann, Universität Konstanz

In der geschlossenen Form ist die Adenylat-Kinase biochemisch besonders aktiv und kann „angedockte“ Moleküle, die es wie eine Muschelschale umschlossen hat – sogenannte Liganden –, in ihrer chemischen Reaktion beschleunigen. Forschern der Universität Konstanz und der schwedischen Umeå University gelang es nun, ein strukturelles Abbild des atomaren Aufbaus von dem Enzym in geschlossener Form und mit eingebettetem Liganden zu gewinnen.

Mittels Kernspinresonanz-Spektroskopie und Röntgenstrukturanalyse wurden strukturelle Informationen über den geschlossenen Zustand des Enzyms erhoben – also genau jenem Moment, in dem es biochemisch besonders aktiv ist.

Ein besonderer Kniff war nötig, um die Strukturanalyse im geschlossenen Zustand überhaupt erst möglich zu machen. Die Forschungsergebnisse, die wichtige Hinweise auf die biochemischen Mechanismen des Energiehaushalts der Zelle liefern, wurden im Wissenschaftsmagazin Proceedings of the National Academy of Sciences (PNAS) veröffentlicht.

Wie eine Muschel öffnet und schließt sich das Enzym Adenylat-Kinase: Es öffnet sich, um einen Liganden zu empfangen, schließt sich, um ihn biochemisch zu „verarbeiten“, und öffnet sich schließlich erneut, um ihn wieder freizulassen und den nächsten Liganden zu erwarten. 340 Mal pro Sekunde geschieht dieser Vorgang – viel zu schnell, um gezielt die einzelnen Momente dieses Ablaufs per Strukturanalyse festzuhalten.

Für Strukturbiologen ist es besonders interessant, Informationen über den geschlossenen Zustand des Enzyms zu gewinnen, wenn dessen biochemische Aktivität am höchsten ist. Prof. Dr. Michael Kovermann, Juniorprofessor für Magnetische Resonanzspektroskopie an der Universität Konstanz, fand einen Weg, genau dies möglich zu machen. Er nutzt eine Disulfid-Brücke als „chemischen Bindfaden“, um das Enzym in seine geschlossene Form zu zwingen und in diesem Zustand zu fixieren.

Das Enzym verharrt in genau dieser Position und kann nun per Kernspinresonanz-Spektroskopie und Röntgenstrukturanalyse analysiert werden. Auf diese Weise konnten erstmals strukturelle Aufnahmen von genau jenem Moment gemacht werden, in dem das Enzym einen Liganden biochemisch umsetzt.

Zwei Jahre zuvor war es Michael Kovermann bereits gelungen, Strukturaufnahmen des Zeitpunkts zu machen, wenn das Enzym noch offen ist, aber bereits einen Liganden enthält. „Das Schöne daran ist, dass wir an diesem Enzym nun beide Grenzzustände spektroskopieren und die Strukturdaten öffentlich zugänglich machen konnten“, schildert Kovermann.

Michael Kovermanns Kniff, das Enzym in seiner geschlossenen Form zu fixieren, kann nun für weitere Untersuchungen eingesetzt werden. Über das Anbringen und Entfernen der Disulfid-Brücke lässt sich der Zustand des Enzyms steuern. Kovermanns Analysen zeigen bereits, dass die Reaktionsaffinität des Enzyms – die chemische Anziehungskraft zwischen dem Enzym und seinem Liganden – in geschlossener Form um ein vielfaches steigt, allerdings zugleich der produktive Umsatz im selben Verhältnis sinkt. Mit anderen Worten: Die chemische Aktivität zwischen Ligand und Enzym ist in geschlossener Form besonders hoch, aber der Umsatz sinkt, weil der Ligand nicht aus der geschlossenen „Muschelschale“ herauskommt und somit weniger Liganden das Enzym passieren.

Darüber hinaus konnte Kovermann nachweisen, dass die strukturelle Dynamik der Adenylat-Kinase stark von der Interaktion zwischen Enzym und Ligand abhängig ist – also von der Frage, ob ein Ligand anwesend oder abwesend ist. Hierfür verglich er den geschlossenen Zustand des Enzyms in beiden Varianten, mit und ohne eingeschlossenem Liganden. Ist der Ligand abwesend, so bleibt die Dynamik des geschlossenen Enzyms unverändert gegenüber seiner offenen Form. Erst bei Anwesenheit eines Liganden zeigen sich deutliche Veränderungen. „Das ist kontraintuitiv, das würde man so nicht erwarten“, schildert Michael Kovermann: „Diesen überraschenden Befund konnte nur die Kernspinresonanz-Spektroskopie zeigen.“

Originalpublikation:
„Structural basis for ligand binding to an enzyme by a conformational selection pathway.“
M. Kovermann, C. Grundström, E.A. Sauer-Eriksson, U.H. Sauer, M. Wolf-Watz, Proceedings of the National Academy of Sciences 114(24):6298-6303, 2017.
DOI: 10.1073/pnas.1700919114

Faktenübersicht:
- Direkte Projektförderung durch: Deutsche Forschungsgemeinschaft (DFG), 2013-2015
- Forschungskooperation mit: Umeå University (Schweden)
- Forschungsarbeiten von Juniorprofessor Dr. Michael Kovermann an der Universität Konstanz werden durch die Stiftung Baden-Württemberg, den Sonderforschungsbereich SFB 969 „Chemical and Biological Principles of Cellular Proteostasis“ sowie die Graduiertenschule Chemical Biology (KoRS-CB) gefördert.
- Vorausgehende Publikation: „Structural basis for catalytically restrictive dynamics of a high-energy enzyme state.“ M. Kovermann, J. Ådén, C. Grundström, E.A. Sauer-Eriksson, U.H. Sauer, M. Wolf-Watz M. Nature Communications, 6:7644, 2015. DOI: 10.1038/ncomms8644.

Hinweis an die Redaktionen:
Ein Bild kann im Folgenden heruntergeladen werden:
https://cms.uni-konstanz.de/fileadmin/pi/fileserver/Bilder/Disulfidbr%C3%BCcke.j...
Bildunterschrift: Darstellung der Elektronendichte an der ausgebildeten Disulfidbrücke (gelb, zwischen C56 und C163) und in deren Nachbarschaft.

Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: + 49 7531 88-3603
E-Mail: kum@uni-konstanz.de

Julia Wandt | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-konstanz.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics