Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein toxischer Verwandlungskünstler

13.07.2016

Molekularbiologen der Universität Bern haben einen Mechanismus entdeckt, der es einem von Bakterien produzierten tödlichen Toxin ermöglicht, in menschliche Zellen einzudringen und diese zu zerstören. Ihre Erkenntnisse können dazu beitragen, Gegenmittel zu solchen Giften zu entwickeln.

Pathogene Bakterien produzieren eine Vielzahl von Toxinen, um ihre Wirte anzugreifen. Einige dieser Gifte werden auch als potenzielle Bioterrorismus-Waffen eingestuft. Ein besonders effizientes Toxin kann Löcher in die Membran von Wirtszellen bohren und diese so zerstören. Dieses sogenannte porenbildende Toxin findet sich in einer Vielzahl von Bakterien.


A. hydrophila-Bakterien (blau) setzen Aerolysin frei (grün). Das Toxin macht mehrere Verwandlungen durch, die es ihm ermöglichen, die Zellwand zu durchdringen und so die Zelle zu zerstören.

Grafik: Nuria Cirauqui, Universidade Federal do Rio de Janeiro.

Bakterien der Gattung Aeromonas hydrophila produzieren ein porenbildendes Toxin namens Aerolysin. Indem diese Bakterien Zellen in der Darmschleimhaut ihres Wirts angreifen – oder Zellen, die sich an der Oberfläche einer offenen Wunde befinden – können sie sich mittels Aerolysin vom Inhalt der zerstörten Zellen ernähren und noch tiefer in den menschlichen Körper eindringen. Als Folge von zerstörten Darmschleimhaut-Zellen leiden Patienten unter schwerer Diarrhöe. A. hydrophila kann auch schwere Wundinfektionen und Blutvergiftung beim Menschen auslösen.

Nebst ihrer pathogenen Funktion sind Aerolysin und andere porenbildende Toxine für die Forschung wegen einer aussergewöhnlichen Eigenschaft interessant: Sie werden vom Bakterium als wasserlösliche Proteine abgesondert, die sich dann ineinanderfügen und in die Membran der Wirtszelle eindringen, um sich dort in ein Membranprotein zu verwandeln.

Der Mechanismus, der dem Toxin diese Verwandlung ermöglicht, war bislang unbekannt und wird rege erforscht. Nun ist es einer internationalen Gruppe von Molekuarbiologen unter Führung der Universität Bern und mit Beteiligung der EPFL gelungen, die atomare Struktur von Aerolysin vor, während und nach dem Eindringen in die Zellmembran zu entschlüsseln. Durch die Erkenntnisse lässt sich die Funktion einer grossen Kategorie von Toxinen deutlich besser verstehen. Die Studie wurde nun im Journal «Nature Communications» publiziert.

Zerstörung der Zelle in vier Schritten

«Aerolysin ist ein sehr stabiles Toxin», sagt Prof. Benoît Zuber vom Institut für Anatomie der Universität Bern, der das Projekt zusammen mit Dr. Ioan Iacovache vom selben Institut leitete. «Diese Stabilität des Toxins beruht auf seiner ungewöhnlichen Kernstruktur, welche wir als doppelkonzentrisches Beta-Fass bezeichnen». Diese verunmöglicht es der Wirtszelle, den Schaden zu reparieren, der aus dem porenbildenden Aerolysin entsteht. «Dies ist auch der Grund, weshalb Aerolysin-ähnliche Toxine zu den wirksamsten porenbildenden Toxinen gehören, die wir kennen», sagt Zuber.

In einem ersten Schritt dockt das wasserlösliche Toxin mit seiner speziellen Kernstruktur an der Zelloberfläche an. In einem zweiten Schritt wandelt sich ein Teil des Proteins um und bildet einen molekularen Pfeilbogen. Dann kollabiert das Toxin, wodurch der Pfeil in die Zelle geschossen wird – und dabei einen molekularen Tunnel durch die Membran öffnet. Schlussendlich biegt sich die Spitze des Pfeils zu einem Haken und verankert so das Toxin fest in der Membran. «Aerolysin kann sich transformieren wie ein Verwandlungskünstler», sagt Zuber. «Diese Wandlungen zu verstehen, wird sehr nützlich sein, um neue und wirksamere Therapien gegen Aeromonas-verursachte Krankheiten zu entwickeln», ergänzt Iacovache.

Wichtig für die DNA-Analyse und die Erforschung von Krankheitsursachen

Wie wegweisende Forschungsergebnisse von anderen Gruppen im Bereich der Nanotechnologie gezeigt haben, kann Aerolysin auch als sehr leistungsfähiges Werkzeug eingesetzt werden, um DNA zu sequenzieren. Zudem wird vermutet, dass bestimmte Proteine unter speziellen Bedingungen eine ähnliche Struktur wie die beschriebene Aerolysin-Struktur bilden. Diese Proteine gehören zu den Auslösern der Alzheimer-Krankheit.

Proteine in atomarer Auflösung sichtbar machen

Mit der Einführung einer neuen Generation von Digitalkameras für Elektronenmikroskope – den sogenannten Direktelektronen-Detektoren – können Forschende nun seit vier Jahren die Struktur von Proteinen visualisieren und bestimmen, wie deren Atome angeordnet sind. Solche Details konnten zuvor nur mittels zweier Methoden sichtbar gemacht werden, der Röntgenkristallographie und der Kernspinresonanzspektroskopie (NMR). Die erstere benötigt jedoch Kristalle des zu untersuchenden Proteins, was im Fall von Membranproteinen schwierig ist. Die zweite Methode beschränkt sich auf sehr kleine Proteine.

«Die neue Elektronenmikroskopie-Methode ist ein Durchbruch in der Biomedizin – dank ihr konnte die atomare Struktur einer ganzen Reihe von Proteinen entschlüsselt werden», sagt Zuber. Dies wurde unter anderem durch das Journal «Nature» gewürdigt, das die sogenannte Kryoelektronenmikroskopie mit Einzelpartikeln zur Forschungsmethode des Jahres 2015 ernannte. Die Kryo-Elektronenmikroskopie, in der Proben schockgefroren werden, um sie besser abbilden zu können, wurde bereits in den 80er Jahren entwickelt und laufend verbessert – so auch in den 90er Jahren an der Universität Bern. Revolutioniert wurde die Methode schliesslich mit der Einführung der sehr viel präziseren Digitalkameras.


Angaben zum Artikel:

Ioan Iacovache, Sacha De Carlo, Nuria Cirauqui, Matteo Dal Peraro, Gisou van der Goot, Benoît Zuber: Cryo-EM structure of aerolysin variants reveals a novel protein fold and the pore formation process, Nature Communications, 13. Juli 2016, doi: 10.1038/NCOMMS12062

Weitere Informationen:

http://www.unibe.ch/aktuell/medien/media_relations/medienmitteilungen/2016/medie...

Nathalie Matter | Universität Bern

Weitere Berichte zu: Bakterien Blutvergiftung Digitalkameras Kernstruktur Proteine Toxin Wunde Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie