Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein toxischer Verwandlungskünstler

13.07.2016

Molekularbiologen der Universität Bern haben einen Mechanismus entdeckt, der es einem von Bakterien produzierten tödlichen Toxin ermöglicht, in menschliche Zellen einzudringen und diese zu zerstören. Ihre Erkenntnisse können dazu beitragen, Gegenmittel zu solchen Giften zu entwickeln.

Pathogene Bakterien produzieren eine Vielzahl von Toxinen, um ihre Wirte anzugreifen. Einige dieser Gifte werden auch als potenzielle Bioterrorismus-Waffen eingestuft. Ein besonders effizientes Toxin kann Löcher in die Membran von Wirtszellen bohren und diese so zerstören. Dieses sogenannte porenbildende Toxin findet sich in einer Vielzahl von Bakterien.


A. hydrophila-Bakterien (blau) setzen Aerolysin frei (grün). Das Toxin macht mehrere Verwandlungen durch, die es ihm ermöglichen, die Zellwand zu durchdringen und so die Zelle zu zerstören.

Grafik: Nuria Cirauqui, Universidade Federal do Rio de Janeiro.

Bakterien der Gattung Aeromonas hydrophila produzieren ein porenbildendes Toxin namens Aerolysin. Indem diese Bakterien Zellen in der Darmschleimhaut ihres Wirts angreifen – oder Zellen, die sich an der Oberfläche einer offenen Wunde befinden – können sie sich mittels Aerolysin vom Inhalt der zerstörten Zellen ernähren und noch tiefer in den menschlichen Körper eindringen. Als Folge von zerstörten Darmschleimhaut-Zellen leiden Patienten unter schwerer Diarrhöe. A. hydrophila kann auch schwere Wundinfektionen und Blutvergiftung beim Menschen auslösen.

Nebst ihrer pathogenen Funktion sind Aerolysin und andere porenbildende Toxine für die Forschung wegen einer aussergewöhnlichen Eigenschaft interessant: Sie werden vom Bakterium als wasserlösliche Proteine abgesondert, die sich dann ineinanderfügen und in die Membran der Wirtszelle eindringen, um sich dort in ein Membranprotein zu verwandeln.

Der Mechanismus, der dem Toxin diese Verwandlung ermöglicht, war bislang unbekannt und wird rege erforscht. Nun ist es einer internationalen Gruppe von Molekuarbiologen unter Führung der Universität Bern und mit Beteiligung der EPFL gelungen, die atomare Struktur von Aerolysin vor, während und nach dem Eindringen in die Zellmembran zu entschlüsseln. Durch die Erkenntnisse lässt sich die Funktion einer grossen Kategorie von Toxinen deutlich besser verstehen. Die Studie wurde nun im Journal «Nature Communications» publiziert.

Zerstörung der Zelle in vier Schritten

«Aerolysin ist ein sehr stabiles Toxin», sagt Prof. Benoît Zuber vom Institut für Anatomie der Universität Bern, der das Projekt zusammen mit Dr. Ioan Iacovache vom selben Institut leitete. «Diese Stabilität des Toxins beruht auf seiner ungewöhnlichen Kernstruktur, welche wir als doppelkonzentrisches Beta-Fass bezeichnen». Diese verunmöglicht es der Wirtszelle, den Schaden zu reparieren, der aus dem porenbildenden Aerolysin entsteht. «Dies ist auch der Grund, weshalb Aerolysin-ähnliche Toxine zu den wirksamsten porenbildenden Toxinen gehören, die wir kennen», sagt Zuber.

In einem ersten Schritt dockt das wasserlösliche Toxin mit seiner speziellen Kernstruktur an der Zelloberfläche an. In einem zweiten Schritt wandelt sich ein Teil des Proteins um und bildet einen molekularen Pfeilbogen. Dann kollabiert das Toxin, wodurch der Pfeil in die Zelle geschossen wird – und dabei einen molekularen Tunnel durch die Membran öffnet. Schlussendlich biegt sich die Spitze des Pfeils zu einem Haken und verankert so das Toxin fest in der Membran. «Aerolysin kann sich transformieren wie ein Verwandlungskünstler», sagt Zuber. «Diese Wandlungen zu verstehen, wird sehr nützlich sein, um neue und wirksamere Therapien gegen Aeromonas-verursachte Krankheiten zu entwickeln», ergänzt Iacovache.

Wichtig für die DNA-Analyse und die Erforschung von Krankheitsursachen

Wie wegweisende Forschungsergebnisse von anderen Gruppen im Bereich der Nanotechnologie gezeigt haben, kann Aerolysin auch als sehr leistungsfähiges Werkzeug eingesetzt werden, um DNA zu sequenzieren. Zudem wird vermutet, dass bestimmte Proteine unter speziellen Bedingungen eine ähnliche Struktur wie die beschriebene Aerolysin-Struktur bilden. Diese Proteine gehören zu den Auslösern der Alzheimer-Krankheit.

Proteine in atomarer Auflösung sichtbar machen

Mit der Einführung einer neuen Generation von Digitalkameras für Elektronenmikroskope – den sogenannten Direktelektronen-Detektoren – können Forschende nun seit vier Jahren die Struktur von Proteinen visualisieren und bestimmen, wie deren Atome angeordnet sind. Solche Details konnten zuvor nur mittels zweier Methoden sichtbar gemacht werden, der Röntgenkristallographie und der Kernspinresonanzspektroskopie (NMR). Die erstere benötigt jedoch Kristalle des zu untersuchenden Proteins, was im Fall von Membranproteinen schwierig ist. Die zweite Methode beschränkt sich auf sehr kleine Proteine.

«Die neue Elektronenmikroskopie-Methode ist ein Durchbruch in der Biomedizin – dank ihr konnte die atomare Struktur einer ganzen Reihe von Proteinen entschlüsselt werden», sagt Zuber. Dies wurde unter anderem durch das Journal «Nature» gewürdigt, das die sogenannte Kryoelektronenmikroskopie mit Einzelpartikeln zur Forschungsmethode des Jahres 2015 ernannte. Die Kryo-Elektronenmikroskopie, in der Proben schockgefroren werden, um sie besser abbilden zu können, wurde bereits in den 80er Jahren entwickelt und laufend verbessert – so auch in den 90er Jahren an der Universität Bern. Revolutioniert wurde die Methode schliesslich mit der Einführung der sehr viel präziseren Digitalkameras.


Angaben zum Artikel:

Ioan Iacovache, Sacha De Carlo, Nuria Cirauqui, Matteo Dal Peraro, Gisou van der Goot, Benoît Zuber: Cryo-EM structure of aerolysin variants reveals a novel protein fold and the pore formation process, Nature Communications, 13. Juli 2016, doi: 10.1038/NCOMMS12062

Weitere Informationen:

http://www.unibe.ch/aktuell/medien/media_relations/medienmitteilungen/2016/medie...

Nathalie Matter | Universität Bern

Weitere Berichte zu: Bakterien Blutvergiftung Digitalkameras Kernstruktur Proteine Toxin Wunde Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Warum der Brennstoffzelle die Luft wegbleibt
28.03.2017 | Technische Universität Wien

nachricht Chlamydien: Wie Bakterien das Ruder übernehmen
28.03.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sterngeburt in den Winden supermassereicher Schwarzer Löcher

28.03.2017 | Physik Astronomie

Wirbel als Räder der Natur

28.03.2017 | Architektur Bauwesen

Von der Bottnischen See bis ins Kattegat – Der Klimageschichte der Ostsee auf der Spur

28.03.2017 | Geowissenschaften