Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Schutzschild für sensible Katalysatoren: Hydrogele blocken schädlichen Sauerstoff ab

15.06.2015

Ein internationales Forscherteam hat einen Weg gefunden, sensible Katalysatoren vor Schäden durch Sauerstoff zu schützen. Das könnte es in Zukunft ermöglichen, Wasserstoff-Brennstoffzellen mit Biomolekülen wie dem Enzym Hydrogenase oder molekularen Katalysatoren umzusetzen.

Bislang wird dafür das seltene und teure Edelmetall Platin benötigt. In den Zeitschriften „Angewandte Chemie“ und „Journal of the American Chemical Society“ berichten die Forscher aus Bochum und Mülheim gemeinsam mit französischen Kollegen, wie ein Hydrogel als „Schutzschild“ für die Biomoleküle dienen kann.


Ein neuartiges Hydrogel schützt Katalysatoren vor Sauerstoffmolekülen (rot), die den Katalysator irreversibel schädigen könnten. Es wandelt den Sauerstoff in unschädliches Wasser um (rot-weiß).

© Felipe Conzuelo

Anforderungen an Katalysatoren sind schwer zu vereinen

Damit Katalysatoren sich für eine industrielle Nutzung eignen, müssen sie effizient, stabil und preisgünstig sowie für eine ganz bestimmte chemische Reaktion maßgeschneidert sein. „Diese Anforderungen in einem Molekül zu kombinieren ist eine große Herausforderung“, sagt Dr. Nicolas Plumeré, Chemiker an der Ruhr-Universität Bochum.

Ein neues Hydrogel, in das die Katalysatoren eingebettet werden, könnte die Entwicklung in Zukunft wesentlich leichter machen. Die Bochumer Forscher konzipierten die Arbeit gemeinsam mit Kollegen vom Max-Planck-Institut für Chemische Energiekonversion in Mülheim sowie der Universität Aix Marseille und dem Centre National de la Recherche Scientifique (CNRS) in Frankreich.

Hydrogel wirkt als Lösungsmittel und schützende Umgebung

Für die Versuche arbeitete das deutsche Team mit dem Enzym Hydrogenase aus der Grünalge Chlamydomonas rheinhardtii; es spaltet Wasserstoff in Protonen und Elektronen. Normalerweise reichen kleinste Mengen Sauerstoff aus, um das Biomolekül irreversibel zu schädigen.

Die Wissenschaftler bauten es jedoch in ein Hydrogel ein, das zwei Funktionen übernimmt: Es dient als Lösungsmittel und sorgt dafür, dass alle Reaktionspartner schnell und leicht zum Enzym gelangen.

Gleichzeitig stellt es eine schützende Umgebung bereit, in der der Sauerstoff nicht zum Enzym vordringen kann, auch wenn er in relativ hohen Konzentrationen vorliegt. Der Trick: Bei der Arbeit der Hydrogenase entstehen Elektronen; sie wandern durch das Hydrogel und werden auf den Sauerstoff übertragen, wodurch dieser in eine unschädliche Form – nämlich in Wasser – umgewandelt wird.

Katalysatordesign könnte in Zukunft bedeutend einfacher werden

Mit Simulationen und Experimenten zeigte das deutsch-französische Team noch eine weitere wichtige Eigenschaft des Hydrogels. Die Aktivität einiger Katalysatoren lässt mit der Zeit nach; manche können über spezielle Prozesse wieder funktionstüchtig gemacht werden, für andere Katalysatoren gibt es keinen solchen Reaktivierungsmechanismus. Das Hydrogel schützt aber selbst solche Katalysatoren, für die es keinen Reaktivierungsprozess gibt.

„In Zukunft muss man bei der Entwicklung von Katalysatoren für technische Anwendungen also nicht mehr auf ihre Robustheit oder passende Reaktivierungsprozesse achten“, erklärt Olaf Rüdiger, Chemiker am Max-Planck-Institut für Chemische Energiekonversion. „Man kann sich einzig und allein darauf konzentrieren, die Aktivität des Katalysators zu maximieren. Das vereinfacht den Entwicklungsprozess sehr und eröffnet neue Möglichkeiten für die Herstellung von Brennstoffzellen.“

Förderung

Die Deutsche Forschungsgemeinschaft förderte das Projekt im Rahmen des Exzellenzcluster RESOLV (EXC 1069). Das französische Teilprojekt wurde unterstützt von „L'Agence Nationale de la Recherche“ und dem „A*MIDEX“-Projekt „MicrobioE“ des Programms „Investissements d’Avenir“ der französischen Regierung.

Titelaufnahmen

A. Alsheikh Oughli, F. Conzuelo, M. Winkler, T. Happe, W. Lubitz, W. Schuhmann, O. Rüdiger, N. Plumeré (2015): Protection from oxidative damage of the O2 sensitive [FeFe]-hydrogenase from Chlamydomonas reinhardtii using a redox hydrogel, Angewandte Chemie International Edition, DOI: 10.1002/anie.201502776R1

V. Fourmond, S. Stapf, H. Li, D. Buesen, J. Birrell, R. Olaf; W. Lubitz, W. Schuhmann, N. Plumeré, C. Léger (2015): The mechanism of protection of catalysts supported in redox hydrogel films, Journal of the American Chemical Society, DOI: 10.1021/jacs.5b01194

Weitere Informationen

Dr. Nicolas Plumeré, Nachwuchsgruppe Molecular Nanostructures am Zentrum für Elektrochemie (CES), Fakultät für Chemie und Biochemie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-29434, E-Mail: nicolas.plumere@rub.de

Dr. Olaf Rüdiger, Gruppenleiter Protein-Elektrochemie, Max-Planck-Institut für Chemische Energiekonversion Mülheim an der Ruhr, Tel. 0208/306-3526, E-Mail: olaf.ruediger@cec.mpg.de

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der molekularen Streckbank
24.02.2017 | Technische Universität München

nachricht Sicherungskopie im Zentralhirn: Wie Fruchtfliegen ein Ortsgedächtnis bilden
24.02.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie