Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Schutzschild für sensible Katalysatoren: Hydrogele blocken schädlichen Sauerstoff ab

15.06.2015

Ein internationales Forscherteam hat einen Weg gefunden, sensible Katalysatoren vor Schäden durch Sauerstoff zu schützen. Das könnte es in Zukunft ermöglichen, Wasserstoff-Brennstoffzellen mit Biomolekülen wie dem Enzym Hydrogenase oder molekularen Katalysatoren umzusetzen.

Bislang wird dafür das seltene und teure Edelmetall Platin benötigt. In den Zeitschriften „Angewandte Chemie“ und „Journal of the American Chemical Society“ berichten die Forscher aus Bochum und Mülheim gemeinsam mit französischen Kollegen, wie ein Hydrogel als „Schutzschild“ für die Biomoleküle dienen kann.


Ein neuartiges Hydrogel schützt Katalysatoren vor Sauerstoffmolekülen (rot), die den Katalysator irreversibel schädigen könnten. Es wandelt den Sauerstoff in unschädliches Wasser um (rot-weiß).

© Felipe Conzuelo

Anforderungen an Katalysatoren sind schwer zu vereinen

Damit Katalysatoren sich für eine industrielle Nutzung eignen, müssen sie effizient, stabil und preisgünstig sowie für eine ganz bestimmte chemische Reaktion maßgeschneidert sein. „Diese Anforderungen in einem Molekül zu kombinieren ist eine große Herausforderung“, sagt Dr. Nicolas Plumeré, Chemiker an der Ruhr-Universität Bochum.

Ein neues Hydrogel, in das die Katalysatoren eingebettet werden, könnte die Entwicklung in Zukunft wesentlich leichter machen. Die Bochumer Forscher konzipierten die Arbeit gemeinsam mit Kollegen vom Max-Planck-Institut für Chemische Energiekonversion in Mülheim sowie der Universität Aix Marseille und dem Centre National de la Recherche Scientifique (CNRS) in Frankreich.

Hydrogel wirkt als Lösungsmittel und schützende Umgebung

Für die Versuche arbeitete das deutsche Team mit dem Enzym Hydrogenase aus der Grünalge Chlamydomonas rheinhardtii; es spaltet Wasserstoff in Protonen und Elektronen. Normalerweise reichen kleinste Mengen Sauerstoff aus, um das Biomolekül irreversibel zu schädigen.

Die Wissenschaftler bauten es jedoch in ein Hydrogel ein, das zwei Funktionen übernimmt: Es dient als Lösungsmittel und sorgt dafür, dass alle Reaktionspartner schnell und leicht zum Enzym gelangen.

Gleichzeitig stellt es eine schützende Umgebung bereit, in der der Sauerstoff nicht zum Enzym vordringen kann, auch wenn er in relativ hohen Konzentrationen vorliegt. Der Trick: Bei der Arbeit der Hydrogenase entstehen Elektronen; sie wandern durch das Hydrogel und werden auf den Sauerstoff übertragen, wodurch dieser in eine unschädliche Form – nämlich in Wasser – umgewandelt wird.

Katalysatordesign könnte in Zukunft bedeutend einfacher werden

Mit Simulationen und Experimenten zeigte das deutsch-französische Team noch eine weitere wichtige Eigenschaft des Hydrogels. Die Aktivität einiger Katalysatoren lässt mit der Zeit nach; manche können über spezielle Prozesse wieder funktionstüchtig gemacht werden, für andere Katalysatoren gibt es keinen solchen Reaktivierungsmechanismus. Das Hydrogel schützt aber selbst solche Katalysatoren, für die es keinen Reaktivierungsprozess gibt.

„In Zukunft muss man bei der Entwicklung von Katalysatoren für technische Anwendungen also nicht mehr auf ihre Robustheit oder passende Reaktivierungsprozesse achten“, erklärt Olaf Rüdiger, Chemiker am Max-Planck-Institut für Chemische Energiekonversion. „Man kann sich einzig und allein darauf konzentrieren, die Aktivität des Katalysators zu maximieren. Das vereinfacht den Entwicklungsprozess sehr und eröffnet neue Möglichkeiten für die Herstellung von Brennstoffzellen.“

Förderung

Die Deutsche Forschungsgemeinschaft förderte das Projekt im Rahmen des Exzellenzcluster RESOLV (EXC 1069). Das französische Teilprojekt wurde unterstützt von „L'Agence Nationale de la Recherche“ und dem „A*MIDEX“-Projekt „MicrobioE“ des Programms „Investissements d’Avenir“ der französischen Regierung.

Titelaufnahmen

A. Alsheikh Oughli, F. Conzuelo, M. Winkler, T. Happe, W. Lubitz, W. Schuhmann, O. Rüdiger, N. Plumeré (2015): Protection from oxidative damage of the O2 sensitive [FeFe]-hydrogenase from Chlamydomonas reinhardtii using a redox hydrogel, Angewandte Chemie International Edition, DOI: 10.1002/anie.201502776R1

V. Fourmond, S. Stapf, H. Li, D. Buesen, J. Birrell, R. Olaf; W. Lubitz, W. Schuhmann, N. Plumeré, C. Léger (2015): The mechanism of protection of catalysts supported in redox hydrogel films, Journal of the American Chemical Society, DOI: 10.1021/jacs.5b01194

Weitere Informationen

Dr. Nicolas Plumeré, Nachwuchsgruppe Molecular Nanostructures am Zentrum für Elektrochemie (CES), Fakultät für Chemie und Biochemie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-29434, E-Mail: nicolas.plumere@rub.de

Dr. Olaf Rüdiger, Gruppenleiter Protein-Elektrochemie, Max-Planck-Institut für Chemische Energiekonversion Mülheim an der Ruhr, Tel. 0208/306-3526, E-Mail: olaf.ruediger@cec.mpg.de

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften