Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein schneller Tanz auf der Oberfläche: Die Dynamik von Wasser an der Grenzfläche zur DNA

04.01.2016

Infrarotexperimente im Ultrakurzzeitbereich zeigen, dass die ersten beiden Wasserschichten um die DNA-Doppelhelix auf einer Zeitskala von weniger als 10(hoch)-12 Sekunden fluktuieren und die Schwingungen der Helixstränge direkt beeinflussen. Dabei bleiben die räumliche Verteilung der Wassermoleküle und ihre Wasserstoffbrücken zur DNA erhalten.

Das komplexe Zusammenspiel von elektrischen Kräften zwischen einer molekularen Oberfläche und ihrer unmittelbaren Umgebung ist für die Struktur und Funktion von biologischen Makromolekülen und Grenzflächen entscheidend. Wasser als elektrischer Dipol und natürliches biologisches Medium nimmt hierbei eine besonders wichtige Rolle ein.


DNA-Helix Schematische Struktur einer DNA-Helix und Verteilung von Wassermolekülen.

Bild: MBI

Elektrische Wechselwirkungen und Wasserstoffbrücken zwischen den polaren und geladenen Strukturelementen an der Oberfläche der DNA und den ersten Schichten des umgebenen Wassers bestimmen die Struktur der Doppelhelix.

Die Abstände zwischen den molekularen Einheiten betragen nur Bruchteile eines Nanometers, das gesamte System fluktuiert auf einer Zeitskala, die kürzer als 10-12 Sekunden ist. Eine Beobachtung dieses Geschehens erfordert molekulare Sonden an der Grenzfläche zwischen DNA und Wasser sowie Messmethoden, die ultraschnelle Fluktuationen sichtbar machen können.

Wissenschaftler des Max-Born-Instituts haben jetzt erstmals molekulare Schwingungen des DNA-Rückgrats als Sonden eingesetzt um strukturelle Fluktuationen an der DNA-Oberfläche direkt sichtbar zu machen.

Hierzu setzten sie die sog. zweidimensionale Infrarotspektroskopie im Femtosekundenbereich ein, mit der sich Veränderungen der Schwingungsabsorption durch fluktuierende Kräfte verfolgen lassen. Dabei bleibt die natürliche Struktur der DNA-Wasser Grenzfläche erhalten, die Methode ist nicht-invasiv.

Die umfangreichen Ergebnisse zeigen, dass Fluktuationen auf einer typischen Zeitskala von 300 fs auftreten. Durch Messungen bei unterschiedlichem Wassergehalt konnten die Beiträge der DNA-Helix und der Wasserhülle hierzu getrennt und quantitativ bestimmt werden.

Es zeigt sich, dass schnelle Bewegungen von Wassermolekülen einen wesentlichen Teil der Fluktuationen verursachen. Dabei werden aber Wasserstoffbrücken mit der DNA nicht gebrochen, vielmehr bleibt ihre grundlegende Anordnung an der DNA-Oberfläche für längere Zeiten erhalten.

Auch ein Austausch von Molekülen in äußere Wasserschichten findet in diesem Zeitbereich nicht statt. Dieses Verhalten steht in starkem Gegensatz zum reinen Wasser, wo Wasserstoffbrücken in schnellem Takt gebrochen und neu gebildet werden.

Eine theoretische Analyse der Daten erlaubt die quantitative Erfassung der fluktuierenden Wechselwirkungen und damit einen direkten Vergleich mit Ergebnissen molekulardynamischer Simulationen. Derartige Vergleiche zwischen Experiment und Theorie sind entscheidend für das Verständnis der Wechselwirkungen, die biologische Funktionen auf molekularer Ebene bestimmen.

Publikationen:
B. Guchhait, Y. Liu, T. Siebert, T. Elsaesser, Ultrafast vibrational dynamics of the DNA backbone at different hydration levels mapped by two-dimensional infrared spectroscopy, Structural Dynamics 3, 043202/1-15 (2016)
T. Siebert, B. Guchhait, Y. Liu, R. Costard, T. Elsaesser, Anharmonic backbone vibrations in ultrafast processes at the DNA-water interface, J. Phys. Chem. B 119, 9670-9677 (2015)

Kontakt:
Max-Born-Institut für Nichtlineare Optik und Kurzzeit­spektroskopie (MBI)
Max-Born-Str. 2A, 12489 Berlin
Dr. Torsten Siebert, 030 / 6392-1414, tsiebert@mbi-berlin.de
Prof. Thomas Elsässer, 030 / 6392-1400, elsasser@mbi-berlin.de

Weitere Informationen:

http://www.mbi-berlin.de/images/highlights/aip-org-highlight-2015-12-22.pdf - Pressemeldung des American Institute of Physics (AIP)
http://www.mbi-berlin.de

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verschlüsse von Blutgefäßen: Wissenschaftler klären Mechanismus der zellulären Selbstheilung auf
24.08.2016 | Justus-Liebig-Universität Gießen

nachricht Fortschritt bei der Impfung gegen Wespengift
24.08.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: Neues DFKI-Projekt SELFIE schlägt innovativen Weg in der Verifikation cyber-physischer Systeme ein

Vor der Markteinführung müssen neue Computersysteme auf ihre Korrektheit überprüft werden. Jedoch ist eine vollständige Verifikation aufgrund der Komplexität heutiger Rechner aus Zeitgründen oft nicht möglich. Im nun gestarteten Projekt SELFIE verfolgt der Forschungsbereich Cyber-Physical Systems des Deutschen Forschungszentrums für Künstliche Intelligenz (DFKI) unter Leitung von Prof. Dr. Rolf Drechsler einen grundlegend neuen Ansatz, der es Systemen ermöglicht, sich nach der Produktion und Auslieferung selbst zu verifizieren. Das Bundesministerium für Bildung und Forschung (BMBF) unterstützt das Vorhaben über drei Jahre mit einer Fördersumme von 1,4 Millionen Euro.

In den letzten Jahrzehnten wurden enorme Fortschritte in der Computertechnik erzielt. Ergebnis dieser Entwicklung sind eingebettete und cyber-physische...

Im Focus: „Künstliches Atom“ in Graphen-Schicht

Elektronen offenbaren ihre Quanteneigenschaften, wenn man sie in engen Bereichen gefangen hält. Ein Forschungsteam mit TU Wien-Beteiligung baut Elektronen-Gefängnisse in Graphen.

Wenn man Elektronen in einem engen Gefängnis einsperrt, dann benehmen sie sich ganz anders als im freien Raum. Ähnlich wie die Elektronen in einem Atom können...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Quanten-Jonglieren mit freien Elektronen

Göttinger Wissenschaftler manipulieren Quantenzustand freier Elektronen mit Lichtfeldern

In der klassischen Physik kann ein Elektron nur eine einzige, bestimmte Geschwindigkeit annehmen. Quantenmechanisch ist es jedoch möglich, dass es sich in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

HTW Berlin richtet im September die 30. EnviroInfo aus

23.08.2016 | Veranstaltungen

micro photonics mit Kurs auf Premiere in Berlin

22.08.2016 | Veranstaltungen

„BirdNumbers 2016“ - 300 Ornithologen kommen zu internationaler Tagung an die Uni Halle

22.08.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Verschlüsse von Blutgefäßen: Wissenschaftler klären Mechanismus der zellulären Selbstheilung auf

24.08.2016 | Biowissenschaften Chemie

Atomare Strukturen von Proteinen aufgeklärt: Biophysiker Adam Lange ausgezeichnet

24.08.2016 | Förderungen Preise

Schatz an der Küste als UN-Dekade Projekt Biologische Vielfalt ausgezeichnet

24.08.2016 | Förderungen Preise