Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Hirnbereich, zwei Planungsstrategien

26.02.2015

Speerfischer sehen beim Fischen wegen der Lichtbrechung ihr Ziel nie an der richtigen Stelle. Wie planen die Hirnzellen die nötige Bewegung des Arms? Spiegeln die Neuronen die Sicht-Position des Fischs wider, also das visuelle Ziel? Oder planen sie das physische Ziel, die tatsächliche Richtung der Armbewegung?

Die Frage nach diesen Aspekten der Bewegungsplanung haben Shenbing Kuang, Pierre Morel und Alexander Gail vom Deutschen Primatenzentrum bearbeitet. Ergebnis: Die meisten Neuronen sind für die Kodierung des physischen Zieles zuständig, also der tatsächlichen, gefühlten Bewegung des Arms. Einige Neuronen planen unabhängig aber auch das visuelle Ziel, also die gesehene Bewegung.


Dr. Pierre Morel richtet einen Versuchsaufbau mit Spiegeltechnik im Labor der Kognitiven Neurowissenschaften am DPZ ein. Auch für die Studie zur Bewegungsplanung wurde ein ähnlichen Aufbau verwendet.

Deutsches Primatenzentrum / Christian Kiel


Dr. Pierre Morel zeigt mit Hilfe einer Umkehrbrille, wie man dem Auge die entgegengesetzte Bewegung zeigt, als man sie eigentlich ausführt.

Deutsches Primatenzentrum / Christian Kiel

Still hält der Speerfischer den Speer im Anschlag über der Wasseroberfläche. Er fixiert sein Ziel, den Fisch. Doch der Anblick täuscht: Wegen der Lichtbrechung an der Oberfläche sieht er den Fisch nicht dort, wo er tatsächlich schwimmt. Wie plant das Gehirn die korrekte Armbewegung? Spiegeln die Hirnzellen (Neurone) vor allem die Position wider, in der der Fisch gesehen wird, also das visuelle Ziel? Oder planen sie das physische Ziel, die tatsächliche Richtung, in die sich Arm und Speer bewegen müssen, um den Fisch zu treffen?

Der Frage nach diesen unterschiedlichen Aspekten der Planung der Bewegung von Gliedmaßen sind Shenbing Kuang, Pierre Morel und Alexander Gail von der Forschungsgruppe Sensomotorik der Abteilung Kognitive Neurowissenschaften im Deutschen Primatenzentrum (DPZ) nachgegangen. Klar war, dass bestimmte Neuronen im Scheitellappen der Großhirnrinde für die Planung von Armbewegungen zuständig sind.

Nur war unbekannt, ob die Neuronen beide beschriebenen Aspekte der Bewegungsplanung übernehmen und ob eine der beiden Planungsfunktionen überwiegt, falls sie nachweisbar sind. Die Ergebnisse der Göttinger Forscher zeigen: Die meisten Neuronen sind für die Kodierung des physischen Zieles zuständig, also der tatsächlichen und damit der gefühlten Bewegung des Arms. Unabhängig davon planen einige Neuronen im selben Hirnareal aber auch das visuelle Ziel, also die gesehene Bewegung (Cerebral Cortex 2015).

Um ihre Frage zur Bewegungsplanung zu beantworten, haben die Forscher ein Experiment durchgeführt, in dem die physische Armbewegung und die visuelle Information über diese Bewegung voneinander getrennt werden konnten. Anders als für den Speerfischer stimmen diese Informationen im Alltag der meisten Menschen nämlich überein: Wer ein Glas auf dem Tisch greifen will, muss keine Lichtbrechung durchs Wasser einkalkulieren.

Um herauszufinden, ob Neuronen während der Planung einer Bewegung die zukünftige gesehene oder die gefühlte Bewegungsrichtung anzeigen, arbeiteten die Neurowissenschaftler mit zwei Rhesusaffen, die in Teilen des Experiments Spiegelbilder ihrer Handbewegung zu sehen bekamen. Bei diesen Tieren ähneln die Hirnregionen und -funktionen denen des Menschen sehr, daher sind die Forschungsergebnisse gut übertragbar.

Die Rhesusaffen waren darauf trainiert, Handbewegungen zu einem Lichtsignal auf einem Touchscreen auszuführen (etwa von der Mitte des Bildschirms nach links), während die Aktivität ihrer Neuronen im posterioren Parietalkortex aufgezeichnet wurde. Dabei verlief die Bewegung einmal unter normaler Sicht, während die Affen ein anderes Mal durch einen Spiegel genau die entgegengesetzte Handbewegung sahen, als sie sie ausführten: Griffen sie nach rechts, sahen sie einen Griff nach links.

Das Ergebnis: Die Aktivität der meisten Neurone unterschied sich in der Planungsphase der Bewegung nicht zwischen normaler und gespiegelter Handbewegung. Doch einige Neuronen im selben Hirnareal reagierten in der gespiegelten Situation genau gegensätzlich. Die Forscher schlossen daraus, dass diese Neuronen für die Planung des gesehenen Ziels der Handbewegung zuständig waren.

Denn dieses Ziel veränderte ja seine Position, wenn die Affen die Handbewegung seitenverkehrt sahen. Shenbing Kuang und seine Kollegen konnten damit zeigen, dass Neuronen für diese beiden verschiedenen Planungsziele im posterioren Parietalkortex koexistieren. Die Häufigkeitsverteilung dieser Neuronen legt dabei nahe, dass die Planung des physikalischen Ziels die dominante Komponente ist. Denn bei beiden Affen fanden sich etwa drei- bis viermal so viele Neuronen für das physische Ziel der Bewegung wie für das visuelle Ziel.

„Diese Ergebnisse geben Aufschluss darüber, wie das Gehirn gleichzeitig verschiedene Aspekte einer Bewegung plant“, erläutert Shenbing Kuang, „denn offenbar beziehen wir bei der Planung gleich die unterschiedlichen sensorischen Konsequenzen unserer Bewegung mit ein.“ Forschungsgruppenleiter Alexander Gail ergänzt: „Dem Wechselspiel von gesehenen und gefühlten Bewegungen wird eine zentrale Rolle beim Erlernen von Bewegungen beigemessen. Diese elementare Fähigkeit wollen wir besser verstehen, um lernfähige Neuroprothesen zu entwickeln.“

Originalpublikation

Kuang, S., Morel P. and Gail, A. (2015): Planning Movements in Visual and Physical Space in Monkey Posterior Parietal Cortex. Cerebral Cortex, Jan 9 (Epub ahead of print).
doi: 10.1093/cercor/bhu312

Kontakt und Hinweise für Redaktionen

Prof. Dr. Alexander Gail
Tel.: +49 551 3851-358
E-Mail: agail@gwdg.de

Christian Kiel (Kommunikation)
Tel: +49 551 3851-424
E-Mail: ckiel@dpz.eu

Die Deutsches Primatenzentrum GmbH (DPZ) - Leibniz-Institut für Primatenforschung betreibt biologische und biomedizinische Forschung über und mit Primaten auf den Gebieten der Infektionsforschung, der Neurowissenschaften und der Primatenbiologie. Das DPZ unterhält außerdem drei Freilandstationen in den Tropen und ist Referenz- und Servicezentrum für alle Belange der Primatenforschung. Das DPZ ist eine der 89 Forschungs- und Infrastruktureinrichtungen der Leibniz-Gemeinschaft.

Weitere Informationen:

http://www.dpz.eu

Christian Kiel | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens
23.01.2017 | Verband Biologie, Biowissenschaften und Biomedizin in Deutschland e.V.

nachricht Ionen gegen Herzrhythmusstörungen – Nicht-invasive Alternative zu Katheter-Eingriff
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie

Vom Feld in die Schule: Aktuelle Forschung zu moderner Landwirtschaft für den Unterricht

23.01.2017 | Bildung Wissenschaft

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungsnachrichten