Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Hirnbereich, zwei Planungsstrategien

26.02.2015

Speerfischer sehen beim Fischen wegen der Lichtbrechung ihr Ziel nie an der richtigen Stelle. Wie planen die Hirnzellen die nötige Bewegung des Arms? Spiegeln die Neuronen die Sicht-Position des Fischs wider, also das visuelle Ziel? Oder planen sie das physische Ziel, die tatsächliche Richtung der Armbewegung?

Die Frage nach diesen Aspekten der Bewegungsplanung haben Shenbing Kuang, Pierre Morel und Alexander Gail vom Deutschen Primatenzentrum bearbeitet. Ergebnis: Die meisten Neuronen sind für die Kodierung des physischen Zieles zuständig, also der tatsächlichen, gefühlten Bewegung des Arms. Einige Neuronen planen unabhängig aber auch das visuelle Ziel, also die gesehene Bewegung.


Dr. Pierre Morel richtet einen Versuchsaufbau mit Spiegeltechnik im Labor der Kognitiven Neurowissenschaften am DPZ ein. Auch für die Studie zur Bewegungsplanung wurde ein ähnlichen Aufbau verwendet.

Deutsches Primatenzentrum / Christian Kiel


Dr. Pierre Morel zeigt mit Hilfe einer Umkehrbrille, wie man dem Auge die entgegengesetzte Bewegung zeigt, als man sie eigentlich ausführt.

Deutsches Primatenzentrum / Christian Kiel

Still hält der Speerfischer den Speer im Anschlag über der Wasseroberfläche. Er fixiert sein Ziel, den Fisch. Doch der Anblick täuscht: Wegen der Lichtbrechung an der Oberfläche sieht er den Fisch nicht dort, wo er tatsächlich schwimmt. Wie plant das Gehirn die korrekte Armbewegung? Spiegeln die Hirnzellen (Neurone) vor allem die Position wider, in der der Fisch gesehen wird, also das visuelle Ziel? Oder planen sie das physische Ziel, die tatsächliche Richtung, in die sich Arm und Speer bewegen müssen, um den Fisch zu treffen?

Der Frage nach diesen unterschiedlichen Aspekten der Planung der Bewegung von Gliedmaßen sind Shenbing Kuang, Pierre Morel und Alexander Gail von der Forschungsgruppe Sensomotorik der Abteilung Kognitive Neurowissenschaften im Deutschen Primatenzentrum (DPZ) nachgegangen. Klar war, dass bestimmte Neuronen im Scheitellappen der Großhirnrinde für die Planung von Armbewegungen zuständig sind.

Nur war unbekannt, ob die Neuronen beide beschriebenen Aspekte der Bewegungsplanung übernehmen und ob eine der beiden Planungsfunktionen überwiegt, falls sie nachweisbar sind. Die Ergebnisse der Göttinger Forscher zeigen: Die meisten Neuronen sind für die Kodierung des physischen Zieles zuständig, also der tatsächlichen und damit der gefühlten Bewegung des Arms. Unabhängig davon planen einige Neuronen im selben Hirnareal aber auch das visuelle Ziel, also die gesehene Bewegung (Cerebral Cortex 2015).

Um ihre Frage zur Bewegungsplanung zu beantworten, haben die Forscher ein Experiment durchgeführt, in dem die physische Armbewegung und die visuelle Information über diese Bewegung voneinander getrennt werden konnten. Anders als für den Speerfischer stimmen diese Informationen im Alltag der meisten Menschen nämlich überein: Wer ein Glas auf dem Tisch greifen will, muss keine Lichtbrechung durchs Wasser einkalkulieren.

Um herauszufinden, ob Neuronen während der Planung einer Bewegung die zukünftige gesehene oder die gefühlte Bewegungsrichtung anzeigen, arbeiteten die Neurowissenschaftler mit zwei Rhesusaffen, die in Teilen des Experiments Spiegelbilder ihrer Handbewegung zu sehen bekamen. Bei diesen Tieren ähneln die Hirnregionen und -funktionen denen des Menschen sehr, daher sind die Forschungsergebnisse gut übertragbar.

Die Rhesusaffen waren darauf trainiert, Handbewegungen zu einem Lichtsignal auf einem Touchscreen auszuführen (etwa von der Mitte des Bildschirms nach links), während die Aktivität ihrer Neuronen im posterioren Parietalkortex aufgezeichnet wurde. Dabei verlief die Bewegung einmal unter normaler Sicht, während die Affen ein anderes Mal durch einen Spiegel genau die entgegengesetzte Handbewegung sahen, als sie sie ausführten: Griffen sie nach rechts, sahen sie einen Griff nach links.

Das Ergebnis: Die Aktivität der meisten Neurone unterschied sich in der Planungsphase der Bewegung nicht zwischen normaler und gespiegelter Handbewegung. Doch einige Neuronen im selben Hirnareal reagierten in der gespiegelten Situation genau gegensätzlich. Die Forscher schlossen daraus, dass diese Neuronen für die Planung des gesehenen Ziels der Handbewegung zuständig waren.

Denn dieses Ziel veränderte ja seine Position, wenn die Affen die Handbewegung seitenverkehrt sahen. Shenbing Kuang und seine Kollegen konnten damit zeigen, dass Neuronen für diese beiden verschiedenen Planungsziele im posterioren Parietalkortex koexistieren. Die Häufigkeitsverteilung dieser Neuronen legt dabei nahe, dass die Planung des physikalischen Ziels die dominante Komponente ist. Denn bei beiden Affen fanden sich etwa drei- bis viermal so viele Neuronen für das physische Ziel der Bewegung wie für das visuelle Ziel.

„Diese Ergebnisse geben Aufschluss darüber, wie das Gehirn gleichzeitig verschiedene Aspekte einer Bewegung plant“, erläutert Shenbing Kuang, „denn offenbar beziehen wir bei der Planung gleich die unterschiedlichen sensorischen Konsequenzen unserer Bewegung mit ein.“ Forschungsgruppenleiter Alexander Gail ergänzt: „Dem Wechselspiel von gesehenen und gefühlten Bewegungen wird eine zentrale Rolle beim Erlernen von Bewegungen beigemessen. Diese elementare Fähigkeit wollen wir besser verstehen, um lernfähige Neuroprothesen zu entwickeln.“

Originalpublikation

Kuang, S., Morel P. and Gail, A. (2015): Planning Movements in Visual and Physical Space in Monkey Posterior Parietal Cortex. Cerebral Cortex, Jan 9 (Epub ahead of print).
doi: 10.1093/cercor/bhu312

Kontakt und Hinweise für Redaktionen

Prof. Dr. Alexander Gail
Tel.: +49 551 3851-358
E-Mail: agail@gwdg.de

Christian Kiel (Kommunikation)
Tel: +49 551 3851-424
E-Mail: ckiel@dpz.eu

Die Deutsches Primatenzentrum GmbH (DPZ) - Leibniz-Institut für Primatenforschung betreibt biologische und biomedizinische Forschung über und mit Primaten auf den Gebieten der Infektionsforschung, der Neurowissenschaften und der Primatenbiologie. Das DPZ unterhält außerdem drei Freilandstationen in den Tropen und ist Referenz- und Servicezentrum für alle Belange der Primatenforschung. Das DPZ ist eine der 89 Forschungs- und Infrastruktureinrichtungen der Leibniz-Gemeinschaft.

Weitere Informationen:

http://www.dpz.eu

Christian Kiel | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Proteine bei der Arbeit beobachten
08.12.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops