Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Halbleiter von der Heizplatte

12.01.2015

Bei der Suche nach neuen, besseren Materialien für organische Halbleiter können Wissenschaftler der Universität Würzburg einen Erfolg vermelden. Ihre neueste Entwicklung hat sogar einen Weltrekord gebrochen: Sie leitet Strom besser als alle vergleichbaren Materialien.

Er ist Weltrekordhalter bei den kleinen Molekülen, was die Ladungsträgermobilität von Elektronen unter Luft betrifft. Er ermöglicht eine neue Herstellungstechnik und eröffnet damit ein neues Arbeitsfeld. Und er verfügt über bessere Eigenschaften unter Prozessbedingungen: Der organische Halbleiter aus dem Labor von Professor Frank Würthner, Inhaber des Lehrstuhls für Organische Chemie II und Leiter des Zentrums für Nanosystemchemie an der Universität Würzburg.


Der organische n-Halbleiter lässt sich unter ambienten Bedingungen – also an der Luft – sublimieren und bildet hierbei Einkristalle, die eine neue Anordnung der Moleküle aufweisen.

Grafik: Matthias Stolte

Für die Chemiker: Es handelt sich um ein Naphthalindiimid, doppelt chloriert und mit Fluoralkylketten substituiert. Der organische Halbleiter lässt sich – anders als vergleichbare Substanzen – gut unter normalen Bedingungen verarbeiten und ist gegen Umwelteinflüsse äußerst stabil. Fünf Jahre lang haben die Würzburger Wissenschaftler zusammen mit ihrem Industriepartner BASF die Substanz erforscht und modifiziert, bis sie die gewünschten Eigenschaften zeigte. Jetzt berichtet die Fachzeitschrift Nature Communications online über die bereits in mehreren Patentanmeldungen für eine wirtschaftliche Nutzung gesicherten Forschungserfolge.

„Plastikelektronik“ ist die Zukunft

Organische Elektronik ist längst im Alltag vieler Menschen angekommen, auch wenn die wenigsten, die damit in Kontakt kommen, überhaupt etwas davon merken. Zahlreiche Produkte, die heute im Handel erhältlich sind, arbeiten bereits mit elektronischen Schaltungen aus leitfähigen Polymeren oder kleineren organischen Verbindungen. So bringen sie beispielsweise Displays farbenreich zum Leuchten, arbeiten in Autos in den Sensoren der Airbags oder produzieren in Form von biegsamen Solarzellfolien auf Rucksackdeckeln Strom.

Und schon in naher Zukunft soll die Produktpalette deutlich ausgeweitet werden: Leuchtende Tapeten, die 50 Prozent weniger Strom verbrauchen als Energiesparlampen, transparente Solarzellfolien, die sich aufkleben lassen, Sensoretiketten auf Fleischverpackungen, die den Frischegrad messen, RFID-Chips, die detaillierte Informationen über den Standort einzelner Produkte entlang der gesamten Lieferkette versenden: Das alles sind nur ein paar Beispiele für potenzielle Einsatzorte der bisweilen auch „Plastikelektronik“ genannten Technik.

Damit die Träume der Industrie tatsächlich wahr werden können, sind Wissenschaftler weltweit auf der Suche nach neuen Bausteinen für organische Halbleiter. Zwei Eigenschaften stehen dabei im Mittelpunkt ihres Interesses: Zum einen müssen die Materialien möglichst gut Strom leiten, damit sie effizient arbeiten. Zum anderen müssen sie möglichst lange stabil bleiben und funktionieren. Verglichen mit „klassischen“ Halbleitern, die auf Silicium basieren, tun sich die organischen Verwandten in diesen Punkten noch schwer. Das Naphthalindiimid-Molekül verschiebt nun die Gewichte.

Enge Zusammenarbeit mit der Industrie

Der neue Halbleiter ist das Ergebnis einer langjährigen engen Zusammenarbeit des Lehrstuhls für Organische Chemie II der Universität Würzburg mit BASF SE, Ludwigshafen, und der InnovationLab GmbH, Heidelberg. Sie war Teil eines Forschungsprojekts, das das Bundesministerium für Bildung und Forschung über fünf Jahre hinweg finanziert hat: „Gedruckte organische Schaltungen und Speicher - Polytos“. Angesiedelt im Spitzencluster „Forum Organic Electronics“ sollten auf diese Weise „Wissenschaft und Wirtschaft strategische Partnerschaften eingehen und die Innovationskraft und den ökonomischen Erfolg Deutschlands stärken“, wie es in einem BMBF-Papier heißt. Der Cluster bündele das Know-how von global agierenden Unternehmen, den Universitäten in Heidelberg und Karlsruhe und zahlreichen weiteren Partnern, um Deutschland „an die Weltspitze bei der Entwicklung der Zukunftstechnologie Organische Elektronik zu führen“.

Unkomplizierte Verarbeitung

Was den in Würzburg entdeckten organischen Naphthalindiimid-Halbleiter für die Industrie interessant macht: „Dieser Halbleiter lässt sich unter Umweltbedingungen herstellen und verarbeiten. Außerdem ist er stabil unter Lufteinfluss“, erklärt Dr. Matthias Stolte, Gruppenleiter am Lehrstuhl von Frank Würthner und Mitautor der in Nature Communications veröffentlichten Arbeit. Normalerweise werden organische Halbleiter entweder im Hochvakuum oder aus einer flüssigen Lösung heraus in einem Druckverfahren verarbeitet, vergleichbar mit einem Tintenstrahldrucker. Die Nachteile dabei: Die Hochvakuummethode ist sehr teuer, die lösungsbasierte Methode dagegen qualitätsmindernd, weil das Lösungsmittel einen störenden Einfluss auf die Qualität der Halbleiterschicht ausübt.

Die Forscher aus BASF und der Universität Würzburg sind einen anderen Weg gegangen: „Wir legen das Material auf einem Substrat auf eine Heizplatte, die auf 180 Grad Celsius erhitzt wird. Bringt man dann ein zweites Substrat in die Nähe, lagert sich dort in einer ein-kristallinen Schicht der Halbleiter ab“, erklärt Stolte. Damit sei die Produktion „extrem simpel“. Den Grund, warum sich das Naphthalindiimid so einfach bei normalen Raumbedingungen verarbeiten lässt, sehen die Forscher in seiner hohen Luftstabilität sowie der leichten Sublimierbarkeit aufgrund seines niedrigen Molekulargewichts.

Wie die Chemiker zeigen konnten, sorgt der Weg über die Heizplatte dafür, dass sich die Moleküle in dem Halbleiter anders anordnen – verglichen mit dem Weg über die Lösung. In der bisher üblichen Variante zeigen die Moleküle das, was Chemiker als „Fischgrätmuster“ bezeichnen; nach der Abscheidung über die Heizplatte entsteht ein Backsteinmuster. Die Folge: Der Ladungstransport wird weniger von der Betriebstemperatur das Bauteils beeinflusst – verglichen mit ähnlichen Molekülen. Das verbessert die Haltbarkeit deutlich. Dabei liegt der Wert immer noch beim Siebenfachen dessen, was heute bei klassischen Solarzellen üblich ist, die aus amorphem Silicium hergestellt werden. Und die Fluorketten sorgen dafür, dass das Naphthalindiimid-Molekül unter Luft- und Wassereinfluss stabil bleibt.

Single-crystal field-effect transistors of new Cl2-NDI polymorph processed by sublimation in air. Tao He, Matthias Stolte, Christian Burschka, Nis hauke Hansen, Thomas Musiol, Daniel Kälblien, Jens Pflaum, Xutang Tao, Jochen Brill & Frank Würthner. Nature Communications, DOI:10.1038/ncomms6954

Kontakt

Prof. Dr. Frank Würthner, T: (0931) 31-85340, wuerthner@chemie.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Konventionelle Antibiotika-Therapie ergänzen
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Bauchfett produziert Stoff, der Insulinresistenz und Entzündungen begünstigt
24.05.2018 | Deutsches Zentrum für Diabetesforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Im Focus: Achema 2018: Neues Kamerasystem überwacht Destillation und hilft beim Energiesparen

Um chemische Gemische in ihre Einzelbestandteile aufzutrennen, ist in der Industrie die energieaufwendige Destillation gängig, etwa bei der Raffinerie von Rohöl. Forscher der Technischen Universität Kaiserslautern (TUK) entwickeln ein Kamerasystem, das diesen Prozess überwacht. Dabei misst es, ob es zu einer starken Tropfenbildung kommt, was sich negativ auf die Trennung der Komponenten auswirken kann. Die Technik könnte hier künftig automatisch gegensteuern, wenn sich Messwerte ändern. So ließe sich auch Energie einsparen. Auf der Prozesstechnik-Messe Achema in Frankfurt stellen sie die Technik vom 11. bis 15. Juni am Forschungsstand des Landes Rheinland-Pfalz (Halle 9.2, Stand A86a) vor.

Bei der Destillation werden Flüssigkeiten durch Verdampfen und darauffolgende Kondensation des Dampfes in ihre Bestandteile getrennt. Ein bekanntes Beispiel...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Ansatz im Kampf gegen Prostatakrebs entdeckt

24.05.2018 | Medizin Gesundheit

Konventionelle Antibiotika-Therapie ergänzen

24.05.2018 | Biowissenschaften Chemie

Vom Stroh zum Energieträger: Eintopf-Rezept für Wasserstoffgewinnung

24.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics