Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Filament geht durch die Wand

24.03.2016

Gestreifte Muskulatur: Wissenschaftler der Universitäten Jena und Stuttgart präsentieren ein molekulares Modell, das die Kontraktion bei kurzen Längen erstmals schlüssig erklären kann

Die Physiologielehrbücher müssen überarbeitet werden: Die Kontraktion gestreifter Muskelfasern verläuft auf molekularer Ebene anders als bislang vermutet. Das berichten Bewegungswissenschaftler der Friedrich-Schiller-Universität Jena und der Universität Stuttgart.


Ausschnitt der Mikrostruktur gestreifter Muskulatur: Die Myosinfilamente (rot und grün) zweier benachbarter Sarkomere durchdringen die maschenartige Struktur der sogenannten Z-Scheibe.

Abbildung: Christian Rode/FSU


Dr. Christian Rode mit einem einfachen Muskelmodell. Der Bewegungswissenschaftler von der Uni Jena hat die Mikrostruktur der gestreiften Muskulatur untersucht.

Foto: Jan-Peter Kasper/FSU

In einer aktuellen Publikation in den „Proceedings of the Royal Society B“ präsentieren Dr. Christian Rode und seine Kollegen ein neuartiges Modell, das die Bewegungsabläufe der Muskelfilamente erstmals schlüssig erklärt und mit sämtlichen experimentellen Daten in Einklang bringt (DOI: 10.1098/rspb.2015.3030).

Muskeln sind die „Motoren“ all unserer Bewegungen. Egal ob wir nur leicht mit dem Finger übers Smartphone-Display wischen oder eine schwere Wasserkiste eine Treppe hinauftragen. Etwa 650 Muskeln arbeiten im menschlichen Körper und sie alle funktionieren nach demselben Prinzip. Wenn der Muskel kontrahiert, gleiten zwei Sorten langgestreckter Proteinmoleküle ineinander und verkürzen dabei den Muskel.

„Von großen Muskellängen kommend steigt die Kraft mit dem Überlappungsgrad beider Molekülketten an“, erläutert Bewegungswissenschaftler Dr. Christian Rode von der Universität Jena. Unter dem Mikroskop mit polarisiertem Licht betrachtet, verleihen die als Aktin und Myosin bezeichneten Moleküle der Muskulatur ein typisches Streifenmuster, weshalb die Skelett-Muskulatur auch als „gestreifte Muskulatur“ bezeichnet wird.

All dies ist seit vielen Jahrzehnten wissenschaftlicher Konsens und Bestandteil eines jeden Lehrbuchs zur Muskelphysiologie. Doch das bisherige Modell hat gravierende Lücken. „Zum Beispiel erzeugt der Muskel bei sehr kurzen Längen immer noch Kräfte, obwohl das nach der bisherigen Theorie nicht möglich ist“, so Dr. Rode. „Diese experimentell immer wieder bestätigten Befunde sind bislang aber ausgeklammert worden, eben weil man keine Erklärung für sie hatte.“

Gemeinsam mit Prof. Dr. Reinhard Blickhan, der den Jenaer Lehrstuhl für Bewegungswissenschaft innehat, und Kollegen der Uni Stuttgart unter Leitung von Prof. Dr. Tobias Siebert hat Rode nun ein Modell entwickelt und simuliert, das diese Daten erstmals schlüssig erklären kann.

Um das zu verstehen, ist ein weiterer Blick tief in die Mikrostruktur der Muskeln notwendig: Die kleinste funktionelle Einheit der Muskelfibrillen ist ein Sarkomer. Ein Sarkomer besteht aus Bündeln von Aktin und Myosinfäden, die an sogenannten Z-Scheiben verankert sind. Diese Z-Scheiben bilden gleichzeitig eine gitterartige Netzstruktur zwischen den Sarkomeren – ähnlich einem Maschendrahtzaun, der einzelne Grundstücke voneinander abgrenzt.

Wenn der Muskel kontrahiert und die Aktin- und Myosinfilamente ineinander gleiten, nähern sich benachbarte Z-Scheiben einander an. Sobald die maximale Überlappung erreicht ist, stoßen die steifen Myosinfilamente an der gegenüberliegenden Z-Scheibe an. Im Gegensatz zur bisherigen Lehrmeinung, wonach die Myosin-Filamente an den Z-Scheiben ungeordnet zusammengestaucht werden, schlagen die Forscher in ihrer nun vorgelegten Publikation einen alternativen Mechanismus vor.

„Die Myosinfilamente stoßen nicht an den Z-Scheiben an, sie dringen in ihre netzartige Struktur ein und gehen durch sie hindurch“, erklärt Christian Rode.

Nur so lasse sich erklären, warum der maximal verkürzte Muskel immer noch mehr Kraft erzeugt – die Myosinfilamente überlappen dafür mit den Aktinfilamenten im benachbarten Sarkomer. „Die Myosinmoleküle sind außerdem viel zu steif, um sich an den Z-Scheiben so zusammenzustauchen, wie es das herkömmliche Modell vorsah“, ist Dr. Rode überzeugt. Das von den Muskelforschern entwickelte und in der aktuellen Studie vorgestellte Modell ermögliche es nun erstmals, sämtliche strukturellen und funktionellen Befunde zur Muskelkontraktion in Einklang zu bringen. Davon versprechen sich die Wissenschaftler langfristig auch ein besseres Verständnis für bestimmte Muskelerkrankungen.

Original-Publikation:
Rode C et al. Myosin filament sliding through the Z-disc relates striated muscle fibre structure to function, Proceedings of the Royal Society B, 2016, DOI: 10.1098/rspb.2015.3030

Kontakt:
Dr. Christian Rode
Institut für Sportwissenschaft der Friedrich-Schiller-Universität Jena
Seidelstraße 20, 07749 Jena
Tel.: 03641 / 945704
E-Mail: christian.rode[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie