Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein DNA-Pantoffelheld

20.03.2017

Pantoffeltierchen haben einen ganz besonderen Trick entwickelt, um die Zellmaschinerie auch in scheinbar unmöglichen Situationen noch nutzen zu können. Forschende des Nationalen Forschungsschwerpunkts «RNA & Disease – Die Rolle von RNS in Krankheitsmechanismen» von der Universität Bern haben zum ersten Mal einen Mechanismus beschrieben, wie «Junk»-DNA noch ausgelesen statt gleich abgebaut wird – und dieser ist von erstaunlicher Raffinesse.

Es klingt ein wenig wie aus einem Design-Wettbewerb: Wie können kleine Informationsschnipsel ausgelesen werden, wenn das Trägermaterial zu klein ist, um in den Leseapparat gefüttert werden zu können?


Ringbildungs-Trick: Herausgeschnittene DNA-Segmente werden durch Stücke von Bahn-Gleisen dargestellt. Die RNA-Polymerase (die «Lokomotive») kann nur vorangehen, wenn die Teile aneinandergefügt sind.

Sophie R. Allen, IZB, Universität Bern

Man hängt die kleinen Schnipsel zu einem längeren Streifen zusammen und verbindet dessen Enden, um handliche Ringe zu erhalten, die sogar mehrmals im Kreis ausgelesen werden können. Auf diese clevere Lösung ist ein kleiner Organismus namens Paramecium tetraurelia (zu den Pantoffeltierchen gehörend) gekommen, um die Transkription von kurzen ausgeschnittenen DNA-Segmenten in RNA zu bewerkstelligen.

Aber man muss die Geschichte eigentlich vom anderen Ende her erzählen: Als Mariusz Nowacki vom Institut für Zellbiologie der Universität Bern kleine RNAs fand, die eine offensichtliche regulatorische Funktion bei der Elimination von DNA-Segmenten aus dem Paramecium-Erbgut erfüllten, machten er und sein Team sich daran, die molekularen Mechanismen zu erforschen:

Wo kamen diese RNAs her und wie genau liess sich ihre Funktion verstehen? Bald hatten sie eine Art Feedback-Loop bei der Elimination der DNA-Segmente gefunden. Klassischerweise nimmt man an, dass diese als nutzlos angesehenen DNA-Abschnitte (auch ‹junk DNA› genannt) aus dem Genom herausgeschnitten und dann unmittelbar von der Zellmaschinerie abgebaut werden. Doch hier dienen sie offenbar noch vor der Verdauung als Vorlagen für kleine RNAs, die dann wiederum beim Herausschneiden weiterer DNA-Schnipsel helfen. Dieses molekulare Schneeballsystem war zuvor noch nie beobachtet worden.

Das Unübersetzbare übersetzen

So schön und überzeugend dieses System aussah, ein Problem blieb: Eigentlich braucht der zelluläre Transkriptionsmechanismus viel längere DNA-Abschnitte, um sich an diese binden und zuverlässig funktionieren zu können. Wie konnten diese Ministücke – kaum länger als 30 Basenpaare – also als Vorlagen fungieren? Den Forschenden war klar: Würden sie keine gute Erklärung dafür finden, dann fiele die ganze schöne Idee in sich zusammen.

«Es war eine interessante Detektivarbeit», erinnert sich Nowacki. Sie hatten bald einen Verdächtigen im Visier – sie mussten ihn nur noch festnageln. «Wir suchten nicht nach dem komplett Unbekannten, es ging mehr darum, eine Idee zu testen.» Und die Idee stellte sich als goldrichtig heraus: Paramecium hat einen Weg gefunden, um die Schnipsel zu längeren DNA-Stücken zusammenzufügen und deren Enden, sobald die Stücke die richtige Länge (von ungefähr 200 Basenpaaren) haben, zu verbinden, sodass ringförmige sogenanne DNA-Konkatemere resultieren, mit denen der Zellmechanismus ohne Probleme hantieren kann.

Junk oder nicht Junk?

Dem Forschungsergebnis kommt womöglich weitgehende Bedeutung zu: Die unnützen DNA-Abschnitte – von der man gemeinhin annimmt, dass sie ohne jeden Nutzen für den Organismus sind und so sogleich nach dem Herausschneiden aus dem Genom abgebaut werden können – haben in diesem Fall tatsächlich eine klar identifizierte Funktion; sie dienen als Vorlage für eine Klasse von biologisch wichtigen kleinen RNAs. Ob ‹Junk'-DNA› tatsächlich wertlos ist oder ob sie nicht vielmehr regulatorische Funktionen übernimmt, wird derzeit zusehends zu einem wichtigen Forschungsfeld in der Molekularbiologie. Nowacki glaubt, dass es seiner Gruppe mit dieser Arbeit das erste Mal gelungen ist, einen präzisen Mechanismus zu beschreiben, wie schon herausgeschnittener DNA-«Abfall» noch von Nutzen ist. Und das würde einer baldigen Namensänderung wohl einiges an Nachdruck verleihen.

«RNA & Disease – Die Rolle von RNS in Krankheitsmechanismen»

Der Nationale Forschungsschwerpunkt «RNA & Disease – Die Rolle von RNS in Krankheitsmechanismen» widmet sich der Untersuchung der RNS (Ribonukleinsäure), die zentraler Drehpunkt vieler Lebensvorgänge ist und weit vielfältiger als ursprünglich angenommen. Sie definiert beispielsweise, wann und in welchen Zellen welche Gene aktiv oder inaktiv sind. Läuft bei dieser genetischen Regulation nicht alles rund, entstehen Krankheiten – etwa Herzerkrankungen, Krebs, Hirn- und Stoffwechselkrankheiten. Der NFS vereint Schweizer Forschungsgruppen, die sich mit verschiedenen Aspekten der RNS-Biologie in unterschiedlichen Organismen befassen. Heiminstitutionen sind die Universität Bern und die ETH Zürich.

Publikationsangaben:

Allen, S. E., Hug, I., Pabian, S., Rzeszutek, I., Hoehener, C., Nowacki M. (2017): Circular Concatemers of Ultra-Short DNA Segments Produce Regulatory RNAs. Cell 168(6). doi: 10.1016/j.cell.2017.02.020

Weitere Informationen:

http://www.unibe.ch/aktuell/medien/media_relations/medienmitteilungen/2017/medie...

Nathalie Matter | Universität Bern

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics