Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Botenstoff des Immunsystems vermittelt die Reparatur von Nervenzellen

21.01.2015

Mainzer Wissenschaftler entdecken neuen Schutzmechanismus nach Schädigung des Nervensystems

Wissenschaftler der Forschungszentren Translationale Neurowissenschaften (FTN) und Immuntherapie (FZI) der Johannes Gutenberg-Universität Mainz haben gemeinsam mit Kollegen der University of Virginia einen neuen Mechanismus identifiziert, der die Reparatur von Nervenzellen nach einer Schädigung des Zentralen Nervensystems vermittelt.


Über einen neu entdeckten Mechanismus vermitteln T-Zellen das Neuauswachsen von Nervenzellfortsätzen, das sogenannte „outgrowth“ – hier eine Aufnahme mittels konfokaler Mikroskopie.“

Universitätsmedizin Mainz

Eine Schlüsselrolle kommt dem sogenannten Interleukin 4 (IL-4) zu, einem Botenstoff des Immunsystems, der von T-Zellen produziert wird. Die Arbeit der Mainzer Wissenschaftler wurde heute online in der Fachzeitschrift „Journal of Clinical Investigation“ veröffentlicht.

Eine Schädigung des Zentralen Nervensystems (ZNS) – durch Unfälle oder fortschreitende neurodegenerative Erkrankungen wie Multiple Sklerose – hat oft weitreichende Auswirkungen. Gleichwohl existieren Schutzmechanismen, die eine gewisse Regeneration des Nervengewebes ermöglichen. Welche Rolle T-Zellen, also bestimmte Zellen des Immunsystems, in diesem Szenario und bei der Reparatur des Nervensystems spielen, ist Gegenstand aktueller Diskussionen in der Fachwelt.

„Bekannt war, dass T-Zellen nach Läsionen im Nervensystem verstärkt auftreten – einige Studien schreiben ihnen jedoch eine schädigende Wirkung zu, andere eine schützende“, so Prof. Dr. Frauke Zipp, Direktorin der Klinik und Poliklinik für Neurologie der Universitätsmedizin Mainz. „Unklar ist bisher, in welchem Fall T-Zellen prinzipiell eine schädigende und wann sie eine schützende Funktion haben und wie diese schützende Funktion auf molekularer Ebene vermittelt wird.“

Diesen Mechanismus konnten die Mainzer Wissenschaftler gemeinsam mit der Gruppe von Prof. Dr. Jonathan Kipnis von der University of Virginia nun klären: In Zellkultur- und Tiermodellen konnten sie einerseits zeigen, dass bestimmte molekulare Mediatoren nach einer Verletzung im ZNS das vermehrte Auftreten von T-Zellen triggern und andererseits entschlüsseln, wie diese T-Zellen ihre schützende Wirkung – also die Reparatur des geschädigten Nervengewebes – vermitteln.

Hierbei kommt dem Botenstoff Interleukin 4 (IL-4), den die T-Zellen produzieren, eine zentrale Rolle zu: Durch bestimmte Andock-Stellen auf den geschädigten Nervenzellen, sogenannte IL-4 Rezeptoren, entfaltet IL-4 unmittelbar seine schützende Wirkung und leitet auf diesem Weg die Reparatur der geschädigten Nervenzellen ein. Dies wiederum erfolgt über die durch IL-4 verstärkte Wirkung sogenannter Neurotrophine.

Nach den neuen Erkenntnissen teilt IL-4 mit diesen „Nervennährstoffen“ einen gemeinsamen Signalweg, der das Neuauswachsen von Nervenzellfortsätzen, das sogenannte „outgrowth“ befördert und so eine Reparatur ermöglicht. Denn als körpereigene Signalstoffe bewirken Neurotrophine zielgerichtete Verbindungen zwischen Nervenzellen, sichern den Fortbestand neuronaler Verbindungen und spielen beim Auf- und Abbau neuer Nervennetze eine große Rolle.

„Diese Ergebnisse werfen ein neues Licht auf die Immunantwort im Zuge einer Schädigung des ZNS“, so Frauke Zipp. „Anders als bei der sonst üblichen Wirkungsweise der T-Zell vermittelten Immunantwort über bestimmte Antigene und Proteinkomplexe zur Immunerkennung, wirken T-Zellen hier antigenunabhängig über ihren eigenen Botenstoff Interleukin-4. Dies ist der erste Nachweis einer solchen Interleukin-vermittelten Immunantwort zum Schutz bzw. zur Reparatur von geschädigtem Nervengewebe ohne Beteiligung der ‚üblichen Verdächtigen‘, sprich der normalerweise für die T-Zellfunktion wichtigen Antigenerkennung. Somit können T-Zellen im Gehirn unter bestimmten Umständen nicht die Rolle des Angreifers, sondern die des Retters übernehmen.“

In der Zukunft könnten die Forschungsergebnisse der Mainzer Neurowissenschaftler auch einen therapeutischen Nutzen haben und bei der Entwicklung wirksamer Immuntherapien zur Reparatur von Nervenschädigungen, die im Rahmen eines Unfalls oder bei Neurodegeneration im Verlauf der Multiplen Sklerose auftreten, eine wichtige Rolle spielen.

Originalpublikation:
Walsh JT, et al. MHCII-independent CD4+ T cells protect injured CNS neurons via IL-4.
doi:10.1172/JCI76210.
http://www.jci.org/articles/view/76210?key=bdb26b22c4b0b64a2fd4

Pressekontakt:
Dr. Renée Dillinger-Reiter, Stabstelle Kommunikation und Presse Universitätsmedizin Mainz,
Tel. 06131 / 17-8391, Fax 06131 / 17-3496, E-Mail: pr@unimedizin-mainz.de

Über die Universitätsmedizin der Johannes Gutenberg-Universität Mainz
Die Universitätsmedizin der Johannes Gutenberg-Universität Mainz ist die einzige medizinische Einrichtung der Supramaximalversorgung in Rheinland-Pfalz und ein international anerkannter Wissenschaftsstandort. Sie umfasst mehr als 60 Kliniken, Institute und Abteilungen, die fächerübergreifend zusammenarbeiten. Hochspezialisierte Patientenversorgung, Forschung und Lehre bilden in der Universitätsmedizin Mainz eine untrennbare Einheit. Rund 3.300 Studierende der Medizin und Zahnmedizin werden in Mainz ausgebildet. Mit rund 7.500 Mitarbeiterinnen und Mitarbeitern ist die Universitätsmedizin zudem einer der größten Arbeitgeber der Region und ein wichtiger Wachstums- und Innovationsmotor.

Weitere Informationen im Internet unter www.unimedizin-mainz.de

Dr. Renée Dillinger-Reiter | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

nachricht Der Evolution des Immunsystems auf der Spur
08.12.2016 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Herz-Bindegewebe unter Strom

08.12.2016 | Biowissenschaften Chemie

Eine Extra-Sekunde zum neuen Jahr

08.12.2016 | Physik Astronomie

Wenn der Fluss krank ist – Fachseminar zu Gewässerökologie und Gewässerschutz

08.12.2016 | Seminare Workshops