Ein Botenstoff des Immunsystems vermittelt die Reparatur von Nervenzellen

Über einen neu entdeckten Mechanismus vermitteln T-Zellen das Neuauswachsen von Nervenzellfortsätzen, das sogenannte „outgrowth“ – hier eine Aufnahme mittels konfokaler Mikroskopie.“ Universitätsmedizin Mainz

Wissenschaftler der Forschungszentren Translationale Neurowissenschaften (FTN) und Immuntherapie (FZI) der Johannes Gutenberg-Universität Mainz haben gemeinsam mit Kollegen der University of Virginia einen neuen Mechanismus identifiziert, der die Reparatur von Nervenzellen nach einer Schädigung des Zentralen Nervensystems vermittelt.

Eine Schlüsselrolle kommt dem sogenannten Interleukin 4 (IL-4) zu, einem Botenstoff des Immunsystems, der von T-Zellen produziert wird. Die Arbeit der Mainzer Wissenschaftler wurde heute online in der Fachzeitschrift „Journal of Clinical Investigation“ veröffentlicht.

Eine Schädigung des Zentralen Nervensystems (ZNS) – durch Unfälle oder fortschreitende neurodegenerative Erkrankungen wie Multiple Sklerose – hat oft weitreichende Auswirkungen. Gleichwohl existieren Schutzmechanismen, die eine gewisse Regeneration des Nervengewebes ermöglichen. Welche Rolle T-Zellen, also bestimmte Zellen des Immunsystems, in diesem Szenario und bei der Reparatur des Nervensystems spielen, ist Gegenstand aktueller Diskussionen in der Fachwelt.

„Bekannt war, dass T-Zellen nach Läsionen im Nervensystem verstärkt auftreten – einige Studien schreiben ihnen jedoch eine schädigende Wirkung zu, andere eine schützende“, so Prof. Dr. Frauke Zipp, Direktorin der Klinik und Poliklinik für Neurologie der Universitätsmedizin Mainz. „Unklar ist bisher, in welchem Fall T-Zellen prinzipiell eine schädigende und wann sie eine schützende Funktion haben und wie diese schützende Funktion auf molekularer Ebene vermittelt wird.“

Diesen Mechanismus konnten die Mainzer Wissenschaftler gemeinsam mit der Gruppe von Prof. Dr. Jonathan Kipnis von der University of Virginia nun klären: In Zellkultur- und Tiermodellen konnten sie einerseits zeigen, dass bestimmte molekulare Mediatoren nach einer Verletzung im ZNS das vermehrte Auftreten von T-Zellen triggern und andererseits entschlüsseln, wie diese T-Zellen ihre schützende Wirkung – also die Reparatur des geschädigten Nervengewebes – vermitteln.

Hierbei kommt dem Botenstoff Interleukin 4 (IL-4), den die T-Zellen produzieren, eine zentrale Rolle zu: Durch bestimmte Andock-Stellen auf den geschädigten Nervenzellen, sogenannte IL-4 Rezeptoren, entfaltet IL-4 unmittelbar seine schützende Wirkung und leitet auf diesem Weg die Reparatur der geschädigten Nervenzellen ein. Dies wiederum erfolgt über die durch IL-4 verstärkte Wirkung sogenannter Neurotrophine.

Nach den neuen Erkenntnissen teilt IL-4 mit diesen „Nervennährstoffen“ einen gemeinsamen Signalweg, der das Neuauswachsen von Nervenzellfortsätzen, das sogenannte „outgrowth“ befördert und so eine Reparatur ermöglicht. Denn als körpereigene Signalstoffe bewirken Neurotrophine zielgerichtete Verbindungen zwischen Nervenzellen, sichern den Fortbestand neuronaler Verbindungen und spielen beim Auf- und Abbau neuer Nervennetze eine große Rolle.

„Diese Ergebnisse werfen ein neues Licht auf die Immunantwort im Zuge einer Schädigung des ZNS“, so Frauke Zipp. „Anders als bei der sonst üblichen Wirkungsweise der T-Zell vermittelten Immunantwort über bestimmte Antigene und Proteinkomplexe zur Immunerkennung, wirken T-Zellen hier antigenunabhängig über ihren eigenen Botenstoff Interleukin-4. Dies ist der erste Nachweis einer solchen Interleukin-vermittelten Immunantwort zum Schutz bzw. zur Reparatur von geschädigtem Nervengewebe ohne Beteiligung der ‚üblichen Verdächtigen‘, sprich der normalerweise für die T-Zellfunktion wichtigen Antigenerkennung. Somit können T-Zellen im Gehirn unter bestimmten Umständen nicht die Rolle des Angreifers, sondern die des Retters übernehmen.“

In der Zukunft könnten die Forschungsergebnisse der Mainzer Neurowissenschaftler auch einen therapeutischen Nutzen haben und bei der Entwicklung wirksamer Immuntherapien zur Reparatur von Nervenschädigungen, die im Rahmen eines Unfalls oder bei Neurodegeneration im Verlauf der Multiplen Sklerose auftreten, eine wichtige Rolle spielen.

Originalpublikation:
Walsh JT, et al. MHCII-independent CD4+ T cells protect injured CNS neurons via IL-4.
doi:10.1172/JCI76210.
http://www.jci.org/articles/view/76210?key=bdb26b22c4b0b64a2fd4

Pressekontakt:
Dr. Renée Dillinger-Reiter, Stabstelle Kommunikation und Presse Universitätsmedizin Mainz,
Tel. 06131 / 17-8391, Fax 06131 / 17-3496, E-Mail: pr@unimedizin-mainz.de

Über die Universitätsmedizin der Johannes Gutenberg-Universität Mainz
Die Universitätsmedizin der Johannes Gutenberg-Universität Mainz ist die einzige medizinische Einrichtung der Supramaximalversorgung in Rheinland-Pfalz und ein international anerkannter Wissenschaftsstandort. Sie umfasst mehr als 60 Kliniken, Institute und Abteilungen, die fächerübergreifend zusammenarbeiten. Hochspezialisierte Patientenversorgung, Forschung und Lehre bilden in der Universitätsmedizin Mainz eine untrennbare Einheit. Rund 3.300 Studierende der Medizin und Zahnmedizin werden in Mainz ausgebildet. Mit rund 7.500 Mitarbeiterinnen und Mitarbeitern ist die Universitätsmedizin zudem einer der größten Arbeitgeber der Region und ein wichtiger Wachstums- und Innovationsmotor.

Weitere Informationen im Internet unter www.unimedizin-mainz.de

Media Contact

Dr. Renée Dillinger-Reiter idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Durchbruch bei CRISPR/Cas

Optimierte Genschere erlaubt den stabilen Einbau von großen Genen. Großer Fortschritt an der CRISPR-Front. Wissenschaftlern des Leibniz-Instituts für Pflanzenbiochemie (IPB) ist es erstmals gelungen, sehr effizient große Gen-Abschnitte stabil und…

Rittal TX Colo: Das neue Rack für Colocation Data Center

Rittal TX Colo: Flexibel, skalierbar und zukunftssicher Mit der zunehmenden Digitalisierung und künftig auch immer mehr KI-Anwendungen steigt der Bedarf an Rechenleistung signifikant – und damit boomt der Colocation-Markt. Unternehmen…

Partner & Förderer