Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Effiziente Umwandlung von Erdgas in Chemie-Grundstoffe

01.07.2015

Ein neuer, Enzymen nachempfundener Zeolith-Katalysator könnte die Umwandlung von Erdgas zu Kraft- und Ausgangsstoffen für die chemische Industrie wesentlich erleichtern. Entwickelt wurde er von einem internationalen Team mit Forschern der Technischen Universität München (TUM), der Technischen Universität Eindhoven und der Universität Amsterdam. Bei der eingehenden Untersuchung des Mechanismus der selektiven Oxidation von Methan zu Methanol identifizierten sie ein Kupfer-Oxo-Cluster als das aktive Zentrum in den Mikroporen des Zeoliths.

In einer Zeit schwindender Mineralöl-Reserven rückt Erdgas als Ressource in den Fokus. Doch das Gas ist schwieriger zu transportieren und nicht leicht in die bestehende industrielle Infrastruktur zu integrieren.


Kupfer-Oxo-Cluster in einem Zeolith mit Mordenit-Struktur (Cu: türkis; O: rot)

Bild: Guanna Li und Evgeny Pidko / TU Eindhoven

Eine der Lösungen dafür sind ’Gas-to-Liquid’-Technologien. Diese wandeln Methan, den Hauptbestandteil von Erdgas, zu sogenanntem Synthesegas um. Aus diesem werden anschließend Methanol und Kohlenwasserstoffe hergestellt, die an chemischen Anlagen oder Kraftstoffunternehmen in der ganzen Welt ausgeliefert werden können.

Dieser Ansatz ist jedoch bisher nur in sehr großen Anlagen effizient durchführbar. Für die wirtschaftliche Verarbeitung von Methan aus kleineren Quellen an entfernten Standorten steht trotz vieler Forschungsanstrengungen derzeit keine 'Gas-to-Liquid’-Chemie zur Verfügung.

Von allen konzeptionell vielversprechenden Verfahren zur direkten Umwandlung von Methan in kleinerem Maßstab scheint die partielle Oxidation zu Methanol die praktikabelste zu sein. Aufgrund der niedrigeren Betriebstemperaturen ist das Verfahren sicher und energieeffizienter als andere.

Bio-inspirierter Katalysator

Ein Forscherteam um Professor Johannes Lercher (Technische Universität München und Pacific Northwest National Laboratory), Maricruz Sanchez-Sanchez (Technische Universität München), Professorin Moniek Tromp (Universität Amsterdam), Evgeny Pidko und Emiel Hensen (Technische Universität Eindhoven) konzentriert sich derzeit auf ein Verfahren zur partiellen Oxidation von Methan, das die enzymatische Umwandlung in einem Protein nachahmt.

Im Fokus des Teams steht ein modifizierter Zeolith. Nach einem in der Arbeitsgruppe von Johannes Lercher entwickelten Verfahren werden in diesem extrem porösen Material Kupferatome eingebaut. Diese kupferhaltigen Zeolithe mit Mordenitstruktur imitieren die Reaktivität des Enzyms Methan-Monooxygenase (MMO), das Methan effizient und selektiv zu Methanol oxidiert.

In ihrer aktuellen Veröffentlichung in Nature Communications geben die Forscher einen detaillierten molekularen Einblick in die Art und Weise, wie der Zeolith das aktive Zentrum des Enzyms imitiert.

Hoch selektiv

Durch die Kombination kinetischer Untersuchungen in München, moderner spektroskopischer Analysen in Amsterdam und theoretischer Modellierungen in Eindhoven konnten die Forscher zeigen, dass die Mikroporen des Zeoliths eine perfekte Umgebung für die hochselektive Stabilisierung des aktiven Kupferzentrums bieten. Sie identifizierten dreikernige Kupfer-Oxo-Cluster, die die Kohlenstoff-Wasserstoff-Bindungen in Methan lockern und damit dessen Umwandlung in Methanol fördern.

„Der entwickelte Zeolith ist eines der wenigen Beispiele eines Katalysators mit klar definierten aktiven Zentren, die gleichmäßig im Zeolith-Gerüst verteilt sind“, sagt Professor Johannes Lercher. „Dies ermöglicht eine wesentlich höhere Effizienz bei der Umwandlung von Methan in Methanol, als es bisher mit Zeolith-Katalysatoren möglich war.“

Darüber hinaus zeigt die Forschungsarbeit die eindeutige Verknüpfung der Struktur der aktiven Zentren mit ihrer katalytischen Aktivität. Dies macht den Zeolith zu einem „mehr als vielversprechenden“ Material, um das Ziel einer mit enzymatischen Systemen vergleichbaren katalytischen Aktivität und Selektivität zu erreichen.

Die Forschung wurde gefördert durch das US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences und das EU-NEXT-GTL Projekt (Innovative Catalytic Technologies & Materials for Next Gas to Liquid Processes). Die XAS-Messungen wurden mit der Unterstützung der Diamond Light Source (Oxfordshire, UK) durchgeführt. Die niederländische Organisation für wissenschaftliche Forschung (NWO) und SURFsara (NL) stellten Supercomputer-Rechenzeit zur Verfügung.

Publikation:

Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol
Sebastian Grundner, Monica A .C. Markovits, Guanna Li, Moniek Tromp, Evgeny A. Pidko,
Emiel J. M. Hensen, Andreas Jentys, Maricruz Sanchez-Sanchez, Johannes A. Lercher
Nature communications, 6, 7546 – DOI: 10.1038/ncomms8546
Link: http://www.nature.com/ncomms/2015/150625/ncomms8546/full/ncomms8546.html

Kontakt:

Prof. Dr. Johannes Lercher
Technische Universität München
Lehrstuhl für Technische Chemie II
Lichtenbergstr. 4, 85748 Garching, Germany
Tel.: +49 89 289 13540 – E-Mail: Johannes.Lercher@ch.tum.de
Internet: http://www.tc2.ch.tum.de

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Hessische Rarität bedroht - Lanzettblättrige Glockenblume als eigene und bedrohte Art identifiziert
01.03.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Umprogrammierte Blutgefäße erleichtern Krebsausbreitung
01.03.2017 | Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher ahmen molekulares Gedränge nach

Enzyme verhalten sich im geräumigen Reagenzglas anders als im molekularen Gedränge einer lebenden Zelle. Chemiker der Universität Basel konnten diese engen Bedingungen nun erstmals in künstlichen Vesikeln naturgetreu simulieren. Die Erkenntnisse helfen der Weiterentwicklung von Nanoreaktoren und künstlichen Organellen, berichten die Forscher in der Fachzeitschrift «Small».

Enzyme verhalten sich im geräumigen Reagenzglas anders als im molekularen Gedränge einer lebenden Zelle. Chemiker der Universität Basel konnten diese engen...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Mit Künstlicher Intelligenz das Gehirn verstehen

Wie entsteht Bewusstsein? Die Antwort auf diese Frage, so vermuten Forscher, steckt in den Verbindungen zwischen den Nervenzellen. Leider ist jedoch kaum etwas über den Schaltplan des Gehirns bekannt.

Wie entsteht Bewusstsein? Die Antwort auf diese Frage, so vermuten Forscher, steckt in den Verbindungen zwischen den Nervenzellen. Leider ist jedoch kaum etwas...

Im Focus: Wie Proteine Zellmembranen verformen

Zellen schnüren regelmäßig kleine Bläschen von ihrer Außenhaut ab und nehmen sie in ihr Inneres auf. Daran sind die EHD-Proteine beteiligt, die Professor Oliver Daumke vom MDC erforscht. Er und sein Team haben nun aufgeklärt, wie sich diese Proteine auf der Oberfläche von Zellen zusammenlagern und dadurch deren Außenhaut verformen.

Zellen schnüren regelmäßig kleine Bläschen von ihrer Außenhaut ab und nehmen sie in ihr Inneres auf. Daran sind die EHD-Proteine beteiligt, die Professor...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ – deutschlandweit größte Fachkonferenz 5.-8. März in Würzburg

01.03.2017 | Veranstaltungen

Nebennierentumoren: Radioaktiv markierte Substanzen vermeiden unnötige Operationen

28.02.2017 | Veranstaltungen

350 Onlineforscher_innen treffen sich zur Fachkonferenz General Online Research an der HTW Berlin

28.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ – deutschlandweit größte Fachkonferenz 5.-8. März in Würzburg

01.03.2017 | Veranstaltungsnachrichten

CeBIT 2017: Automatisiertes Fahren: Sicheres Navigieren im Baustellenbereich

01.03.2017 | CeBIT 2017

Hybrid-Speicher mit Marktpotenzial: Batterie-Produktion goes Industrie 4.0

01.03.2017 | Energie und Elektrotechnik