Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Echtzeitbeobachtung von Elektronendynamiken in Molekülen

19.07.2013
Die Bewegung von Elektronen in Molekülen findet auf der unvorstellbar kurzen Attosekundenzeitskala (1 as = 10-18 s) statt.

Die Beobachtung und Kontrolle dieser schnellen Ladungsumordnung ist ein wichtiges Ziel in der modernen Molekülphysik. Einige theoretische Arbeiten sagen vorher, dass das schnelle Entfernen von Elektronen aus Molekülen eine Ladungsoszillation auslöst, die wiederum die nachfolgende Chemie beeinflussen kann. Ein erster Schritt in Richtung Kontrolle solcher Prozesse ist es zu lernen, wie man Elektronen in Echtzeit experimentell beobachten kann. Genau dies ist nun in den Attosekundenlaboratorien des MBI gelungen.

Die kürzesten Laserimpulse, welche Wissenschaftler heutzutage erzeugen können, haben eine Impulsdauer von nur 50 - 500 as. In einem Prozess, der „Erzeugung höherer Harmonischer“ (high-order harmonic generation (HHG)) genannt wird, wird ein Edelgas von einem Nahinfrarotlaser ionisiert. Das freigesetzte Elektron wird im Laserfeld in Feldpolarisationsrichtung erst vom Ion weg und danach zum Ion zurück beschleunigt. Hierbei kommt es zur Rekombination und die aufgebrachte Energie, welche benötigt wurde um das Gas zu ionisieren und das freie Elektron zu beschleunigen, wird in Form von Photonen freigesetzt. Die Photonenenergie liegt typischerweise im Bereich von 10 - 100 eV und entspricht einem Vielfachen der Photonenenergie des Nahinfrarotlasers. Da die Periode des Nahinfrarotfeldes im Bereich von nur wenigen Femtosekunden liegt und der Rekombinationszeitpunkt für alle freigesetzten Elektronen etwa gleich ist, kann man optische Impulsdauern im Attosekundenbereich erreichen.

Während Femtosekundenimpulse erfolgreich genutzt wurden um Strukturänderungen in Molekülen zu studieren, benötigt man Attosekundenimpulse um die schnellen Bewegungen von Elektronen in Molekülen zu verfolgen. Nachdem diese ultrakurzen optischen Impulse im Jahr 2001 zum ersten Mal beobachtet worden sind, wurden diese für Studien von verschiedensten Systemen wie Atomen, Molekülen und Festkörpern eingesetzt. In vorangegangen Arbeiten des MBI-Teams wurden bereits Attosekundenimpulse für Pumpe-Probe-Untersuchungen an Molekülen genutzt. Es wurden erste experimentelle Hinweise auf die Kopplung von Elektronen- und Kernbewegungen auf Attosekunden- und Femtosekundenzeitskalen sowie die Auswirkungen der Verschränktheit in Multielektronensystemen gefunden. Es war bisher allerdings nicht möglich reine Elektronendynamiken in neutralen Molekülen mit Attosekundenimpulsen zu studieren.

Die neusten Ergebnisse zur erfolgreichen Beobachtung von molekularen Elektronendynamiken basieren auf „dynamischer Ausrichtung“. Diese Technik wurde schon vor einiger Zeit vom MBI-Team genutzt und ist mittlerweile ein fester Bestandteil von vielen Experimenten, welche die Struktur und Dynamiken von und in Molekülen untersuchen. Wird ein Molekül Laserstrahlung ausgesetzt, die zwar zu schwach ist das System zu ionisieren, aber stark genug um im Molekül einen Dipol zu induzieren, so richtet sich die polarisierbarste Molekülachse entlang der Laserpolarisationsachse aus. Mit Hilfe dieser dynamischen Ausrichtung gelingt es Prozesse, welche im Molekülbezugssystem stattfinden, im Laborbezugssystem zu studieren.

In den kürzlich veröffentlichten Experimenten, die vom MBI-Team zusammen mit Kollegen aus Lyon (Frankreich) und Lund (Schweden) durchgeführt wurden, konnte dieser oszillierende Dipol direkt beobachtet werden. Das Molekül wurde durch einen Attosekundenimpulszug ionisiert, der zum Feld des dipolinduzierenden Nahinfrarotlasers synchronisiert war. Je nach Phase zwischen Pumpe- und Probeimpuls war die Ionisationswahrscheinlichkeit deutlich verschieden. Waren die Blitze des Attosekundenimpulszugs synchronisiert zum Nulldurchgang des Nahinfrarotfeldes (Abbildung 1 (a)), so war die Ionisationsausbeute kleiner als wenn die Blitze mit den Extrema des Nahinfrarotfeldes synchronisiert wurden (Abbildung 1 (b)). Der Grund hierfür ist die Energie- und Impulserhaltung. Vorausgesetzt die Photonenenergie im Attosekundenblitz ist ausreichend, ist es deutlich einfacher Elektronen aus dem Molekül zu lösen, welche sich dicht an den atomaren Kernen bewegen. Diese Aufenthaltswahrscheinlichkeit wird aber durch das Nahinfrarotfeld periodisch verändert (Abbildung 1 (c)), was zu einer Modulation des Ionisationswechselwirkungsquerschnittes führt (Abbildung 2).

Das Pumpe-Probe-Experiment wurde für verschiedene Moleküle durchgeführt, wobei sich der o.g. Effekt linear mit der Polarisierbarkeit der Moleküle veränderte (Abbildung 2). Die experimentelle Anordnung kann als erste Implementierung der Stark-Spektroskopie auf Attosekundenzeitskala interpretiert werden. Mit dieser Methode wird die Antwort des Moleküls auf ein äußeres elektrisches Feld optisch abgefragt. Zukünftige Experimente des MBI-Teams werden sich mit transienter Absorption mit Attosekundenzeitauflösung beschäftigen. Außerdem sollen optische Attosekundenimpulse genutzt werden um intrinsische Ladungsbewegungen in Molekülen, welche nicht durch ein externes Laserfeld induziert wurden, zu beobachten.

Kontakt:

Prof. Marc Vrakking, +49-30-6392-1200
Christian Neidel, +49-30-6392-1238
Weitere Informationen:
http://prl.aps.org/abstract/PRL/v111/i3/e033001
- Paper, veröffentlicht im Physical Review Letters

Gesine Wiemer | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.mbi-berlin.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie