Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Durchbruch bei der Vermessung von biologisch inspirierten Katalysatoren für Brennstoffzellen

21.10.2015

Ein wissenschaftliches Problem ist gelöst: Forschern des TU-Fachgebietes „Elektrochemische Katalyse und Materialien“ von Prof. Dr. Peter Strasser gelang es erstmals, die Zahl und die Aktivität der aktiven Oberflächenatome eines der Natur nachempfundenen edelmetallfreien Katalysators für Wasserstoffbrennstoffzellen genau zu beziffern / Arbeit wird heute in Nature Communications veröffentlicht

Als zentrale Energiequelle in wasserstoffbetriebenen Fahrzeugen wird die Polymer-Elektrolyt-Membran-Brennstoffzelle (PEM-BZ) seit einigen Jahren beforscht. In der PEM-BZ wird die chemische Energie des Wasserstoffs und des Sauerstoffs der Luft in elektrische Energie gewandelt.

Das einzige Reaktionsprodukt ist Wasser. Um eine hinreichende elektrische Leistung zu gewährleisten, sind chemische Katalysatoren an der Wasserstoff- und Sauerstoffseite der PEM-BZ nötig. In solchen Katalysatoren spielt die Zahl und individuelle katalytische Aktivität der den Gasen zugänglichen Atome des Katalysators eine zentrale Rolle für die PEM-BZ-Leistung.

Während für die üblicherweise verwendeten platinhaltigen Katalysatoren Zahl und Aktivität der reaktiven Atome in Katalysatoren gut zugänglich ist, war die Quantifizierung dieser beiden Grössen für eine neuere Generation von völlig platinfreien, kostengünstigeren Katalysatoren bisher unmöglich. Das hat die Entwicklung von verbesserten Katalysatoren stark behindert.

Forschern aus dem TU-Fachgebiet „Elektrochemische Katalyse und Materialien“ um Prof. Dr. Peter Strasser in Zusammenarbeit mit Forschern der TU Darmstadt haben dieses Problem gelöst. Der Artikel wird heute in Nature Communications publiziert.

Die Wissenschaftler nutzten den Effekt, dass Kohlenmonoxidgasmoleküle sich bei tiefen Temperaturen unter minus 50 Grad Celsius mit den aktiven Atomen des Katalysators in bestimmten Verhältnissen verbinden. Die Bestimmung der Menge an gebundenen Gasmolekülen liefert daher ein Maß für die Zahl der aktiven Katalysatoratome und die individuelle Aktivität der Atome.

Kombiniert mit anderen Daten konnten die Forscher sogar einen sogenannten Katalysatornutzungsgrad bestimmen. Dieser erlaubt Vorhersagen zur maximal möglichen Leistungsfähigkeit eines Katalysators und damit letztlich der PEM-BZ.

Der von Prof. Dr. Peter Strasser und Prof. Dr. Ulrike Kramm beschriebene Durchbruch zur Quantifizierung der Katalysatoreigenschaften ermöglicht eine verständnis-basierte Verbesserung der Stabilität und Aktivität von der Natur nachempfundenen platinfreien Katalysatoren für PEM-BZ. Er ist damit ein wichtiger Beitrag für die Erforschung und Entwicklung kostengünstigeren und nachhaltigeren PEM-BZ als zentrale Energiequelle in wasserstoffbetriebenen Fahrzeugen.

Originalveröffentlichung:
Nastaran Ranjbar Sahraie, Ulrike I. Kramm*, Julian Steinberg, Yuanjian Zhang, Arne Thomas, Tobias Reier, Jens-Peter Paraknowitsch and Peter Strasser, Quantifying the density and utilization of active sites in non-precious metal oxygen electro-reduction catalysts, Nat. Commun. 2015, 10.1038/ncomms9618

Weitere Informationen erteilen Ihnen gern:
Prof. Dr. Peter Strasser
TU Berlin
Fachgebiet Elektrochemische Katalyse und Materialien
Tel.: 030/314-29542
E-Mail: pstrasser@tu-berlin.de

Prof. Dr. Ulrike Kramm
TU Darmstadt
Lehrstuhl Katalysatoren und Elektrokatalysatoren
Tel.: 06151/16-20356
E-Mail: kramm@ese.tu-darmstadt.de

Stefanie Terp | Technische Universität Berlin
Weitere Informationen:
http://www.tu-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Up-Scaling: Katalysatorentwicklung im Industriemaßstab
22.11.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Ozeanversauerung schädigt Miesmuscheln im Frühstadium
22.11.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterien als Schrittmacher des Darms

22.11.2017 | Biowissenschaften Chemie

Ozeanversauerung schädigt Miesmuscheln im Frühstadium

22.11.2017 | Biowissenschaften Chemie

Die gefrorenen Küsten der Arktis: Ein Lebensraum schmilzt davon

22.11.2017 | Geowissenschaften