Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

DSMZ und JGI bestimmen Erbgut von mehr als 1000 Bakterien

14.06.2017

Biologen und Informatiker des Leibniz-Instituts DSMZ haben in einem fünfjährigen Forschungsprojekt das komplette Erbgut von über 1000 Bakterien und Archaeen bestimmt. Nie zuvor wurden in einem einzelnen Projekt mehr mikrobielle Typstammgenome sequenziert. Die Sequenzdaten stellen die Wissenschaftler öffentlich zur Verfügung. Damit steht für Wissenschaftler weltweit eine Vergleichsdatenbank bereit, die die mikrobielle und metagenomische Forschung in Zukunft deutlich vereinfacht.

Biologen und Informatiker des Leibniz-Instituts DSMZ−Deutsche Sammlung von Mikroorganismen und Zellkulturen und des kalifornischen Joint Genome Institute (JGI) haben in einem fünfjährigen Forschungsprojekt das komplette Erbgut von über 1000 Bakterien und Archaeen bestimmt. Nie zuvor wurden in einem einzelnen Projekt mehr mikrobielle Typstammgenome sequenziert.


Phylogenie und Verteilung der GEBA-Stämme

Nature Biotechnology

So wurde die Zahl der sequenzierten Typstämme, also der Referenzkulturen einzelner Bakterienarten, auf einen Schlag mehr als verdoppelt. Darüber hinaus haben die Wissenschaftler in den genetischen Codes zahlreiche neue Enzymkomplexe identifiziert, die Grundlage für neue biotechnologische oder medizinische Anwendungen sein können. Ihre Ergebnisse veröffentlichten die Projektpartner nun in der Fachzeitschrift Nature Biotechnology.

Die Sequenzdaten stellen die Wissenschaftler im Rahmen der gemeinnützigen GEBA-Initiative (Genomic Encyclopedia of Bacteria and Archaea, Genomische Enzyklopädie der Bakterien und Archaeen) öffentlich zur Verfügung. Damit steht für Wissenschaftler weltweit eine Vergleichsdatenbank bereit, die die mikrobielle und metagenomische Forschung in Zukunft deutlich vereinfacht. Die Studie konnte auch zeigen, dass die vielen neuen Referenzgenome eine deutlich genauere Identifizierung von Sequenzen aus Umweltproben ermöglichen.

Die DSMZ brachte in das Projekt ihre Expertise in der Anzucht von Mikroorganismen und in der phylogenomischen Auswertung ein. So konnten die Experten der DSMZ auch aus schwierig zu kultivierenden Bakterienstämmen Zellmasse und DNA für die Genomsequenzierung gewinnen. Aber auch Stammbäume wurden an der DSMZ bioinformatisch aus kompletten Genomsequenzen rekonstruiert.

„Bisher lag der Fokus bei der Entschlüsselung von bakteriellem Erbgut vor allem auf einzelnen medizinisch und biotechnologisch besonders wichtigen Arten“, erläutert PD Dr. Markus Göker, Projektleiter an der DSMZ. So stammten 2015 ganze 43 Prozent aller sequenzierter Bakteriengenome von gerade einmal zehn verschiedenen Krankheitserregern.

Diese Fokussierung hat zwar geholfen, ein besseres Verständnis von der Entstehung von Krankheiten zu bekommen, hat aber auch zu einem verzerrten Bild der bakteriellen Diversität geführt, insbesondere mit Blick auf ihre funktionellen Eigenschaften. Denn je weniger eng zwei Bakterienstämme miteinander verwandt sind, desto größer ist oft die Wahrscheinlichkeit, dass sie unterschiedliche physiologische Eigenschaften oder Funktionen aufweisen, so Göker. Mit den jetzt präsentierten Daten haben die Projektpartner einen ersten großen Schritt vorwärts unternommen, um die verfügbaren Daten zu bakteriellem Erbgut auf eine phylogenetisch breitere Grundlage zu stellen.

Dennoch weist der bakterielle Stammbaum noch immer große Lücken auf. DSMZ und JGI haben daher bereits drei Folgeprojekte gestartet, in denen die Partner jeweils weitere 1000 bakterielle Genome sequenzieren werden.

Originalartikel: Supratim Mukherjee, Rekha Seshadri, Neha J Varghese, Emiley A Eloe-Fadrosh, Jan P Meier-Kolthoff, Markus Göker, R Cameron Coates, Michalis Hadjithomas, Georgios A Pavlopoulos, David Paez-Espino, Yasuo Yoshikuni, Axel Visel, William B Whitman, George M Garrity, Jonathan A Eisen, Philip Hugenholtz, Amrita Pati, Natalia N Ivanova, Tanja Woyke, Hans-Peter Klenk & Nikos C Kyrpides: 1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life; Nature Biotechnology (2017), doi:10.1038/nbt.3886

Wissenschaftlicher Kontakt
PD Dr. Markus Göker
Arbeitsgruppe Phylogenomik
Tel.: 0531 2616-272
E-Mail: markus.goeker@dsmz.de

Pressekontakt:
Christian Engel
Leiter Presse und Kommunikation
Tel. 0531 2616-300
Fax 0531 2616-418
E-Mail christian.engel@dsmz.de

Leibniz-Institut DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH
Inhoffenstraße 7 B
38124 Braunschweig
Deutschland / Germany

Über das Leibniz-Institut DSMZ
Das Leibniz-Institut DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH ist eine Einrichtung der Leibniz-Gemeinschaft und mit seinen umfangreichen wissenschaftlichen Services und einem breiten Spektrum an biologischen Materialien seit Jahrzehnten weltweiter Partner für Forschung und Industrie. Als einem der größten biologischen Ressourcenzentren seiner Art wurde der DSMZ die Übereinstimmung mit dem weltweit gültigen Qualitätsstandard ISO 9001:2008 bestätigt. Als Patenthinterlegungsstelle bietet die DSMZ die bundesweit einzigartige Möglichkeit, biologisches Material nach den Anforderungen des Budapester Vertrags aufzunehmen. Neben dem wissenschaftlichen Service bildet die sammlungsbezogene Forschung das zweite Standbein der DSMZ. Die Sammlung mit Sitz in Braunschweig existiert seit 48 Jahren und beherbergt mehr als 56.000 Kulturen und Biomaterialien. Die DSMZ ist die vielfältigste Sammlung weltweit: neben Pilzen, Hefen, Bakterien und Archaea werden dort auch menschliche und tierische Zellkulturen sowie Pflanzenviren und pflanzliche Zellkulturen erforscht und archiviert. www.dsmz.de

Über die Leibniz Gemeinschaft
Die Leibniz-Gemeinschaft verbindet 91 selbständige Forschungseinrichtungen. Ihre Ausrichtung reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Raum- und Sozialwissenschaften bis zu den Geisteswissenschaften. Leibniz-Institute widmen sich gesellschaftlich, ökonomisch und ökologisch relevanten Fragen. Sie betreiben erkenntnis- und anwendungsorientierte Forschung, auch in den übergreifenden Leibniz-Forschungsverbünden, sind oder unterhalten wissenschaftliche Infrastrukturen und bieten forschungsbasierte Dienstleistungen an. Die Leibniz-Gemeinschaft setzt Schwerpunkte im Wissenstransfer, vor allem mit den Leibniz-Forschungsmuseen. Sie berät und informiert Politik, Wissenschaft, Wirtschaft und Öffentlichkeit. Leibniz-Einrichtungen pflegen enge Kooperationen mit den Hochschulen ‑ u.a. in Form der Leibniz-WissenschaftsCampi, mit der Industrie und anderen Partnern im In- und Ausland. Sie unterliegen einem transparenten und unabhängigen Begutachtungsverfahren. Aufgrund ihrer gesamtstaatlichen Bedeutung fördern Bund und Länder die Institute der Leibniz-Gemeinschaft gemeinsam. Die Leibniz-Institute beschäftigen rund 18.600 Personen, darunter 9.500 Wissenschaftlerinnen und Wissenschaftler. Der Gesamtetat der Institute liegt bei mehr als 1,7 Milliarden Euro.

Weitere Informationen:

https://www.dsmz.de/de/forschung/mikroorganismen/projekte/geba-genomische-enzykl... Das GEBA-Projekt

Christian Engel | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics