Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Doppelte Enzym-Blockade gegen Lungentumore verspricht neuen Therapieansatz

23.09.2013
Medikamente gegen Krebs kann es gar nicht genug geben. Denn immer wieder schaffen es Tumoren, selbst die Wirkung der besten Substanzen gegen bösartiges wucherndes Wachstum auszuhebeln.

Professor Reinhard Zeidler von der Münchner Uni-Klinik für Hals-Nasen-Ohrenheilkunde sowie des Helmholtz-Zentrum München und sein Kollege Professor Christoph Renner von der Universität Zürich haben jetzt zwei sogenannte Antikörper entwickelt. Diese Moleküle blockieren zwei Enzyme, die solide Tumoren wie Lungen-, Brust- oder Darmkrebs brauchen, um zu wachsen.

Die beiden Enzyme sind die Carboanhydrasen 9 und 12. Sie sitzen auf der Oberfläche fast aller Tumorzellen, die bislang darauf untersucht wurden. Wahrscheinlicher Grund: Wenn solide Tumoren wachsen, leiden sie häufig unter Sauerstoffmangel, weil die Blutversorgung nicht optimal ist. Die beiden Carboanhydrasen helfen dem Krebs, mit diesem Problem umzugehen. Folglich sind sie auf den Tumorzellen in hoher Konzentration vertreten.

Deshalb versuchen Experten seit längerem, die Enzyme mit Antikörpern auszuschalten. Bisher existierende Antikörper gegen die Carboanhydrasen 9 und 12 binden allerdings wahllos an den Molekülen. Die Professoren Zeidler und Renner hingegen haben als weltweit einziges Forscherteam zwei Antikörper geschaffen, die exakt das „aktive Zentrum“ der Enzyme blockieren. „Damit kann die chemische Reaktion nicht mehr ablaufen, die diese Enzyme katalysieren“, erklärt der Münchner Forscher.

Demnach sei es auch extrem wichtig, beide Carboanhydrasen zu hemmen. Denn bisherige Studien haben gezeigt, dass sich die beiden Enzyme gegenseitig aushelfen. Blockiert man eines, wird das andere umso aktiver. In bisherigen Versuchen mit Lungentumor-Zellen haben die Forscher nur den Antikörper gegen Carboanhydrase 12 eingesetzt. Das Wachstum menschlicher Lungentumoren in behandelten Mäusen ging daraufhin um bis zu 80 Prozent zurück. Wir erwarten allerdings eine noch größere Wirkung, wenn wir jetzt beide Enzyme blockieren“, so Zeidler zum laufenden Projekt.

Die Wilhelm Sander-Stiftung fördert dieses Forschungsprojekt mit rund 120.000 Euro. Stiftungszweck ist die Förderung der medizinischen Forschung, insbesondere von Projekten im Rahmen der Krebsbekämpfung. Seit Gründung der Stiftung wurden insgesamt über 190 Millionen Euro für die Forschungsförderung in Deutschland und der Schweiz bewilligt. Die Stiftung geht aus dem Nachlass des gleichnamigen Unternehmers hervor, der 1973 verstorben ist.

Kontakt (Projektleitung):
Prof. Dr. Reinhard Zeidler, Klinikum der Universität München
Tel: +49(0)89 3187-1239, E-Mail: reinhard.zeidler@med.uni-muenchen.de

Bernhard Knappe | idw
Weitere Informationen:
http://www.wilhelm-sander-stiftung.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nerven steuern die Bakterienbesiedlung des Körpers
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Mit künstlicher Intelligenz zum chemischen Fingerabdruck
26.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie