Doppelt aktiviert besser

Darstellung der Struktur eines Internalin B-Dimers. Grafik: Helmholtz-Zentrum für Infektionsforschung, Braunschweig<br>

Bakterien ist jedes Mittel recht, um einen Organismus zu infizieren. Sie dringen in Zellen ein, wandern durch den Körper, täuschen das Immunsystem oder missbrauchen Abläufe der Wirtszelle für ihre Zwecke.

Jedes Bakterium hat dabei seine eigene Methode. Welche Mechanismen Listeria-Bakterien nutzen, haben jetzt Strukturbiologen der Universität Bielefeld und des Helmholtz-Zentrums für Infektionsforschung (HZI) in Braunschweig in Kooperation mit einer englischen Arbeitsgruppe herausgefunden.

Der Trick der Erreger: Sie binden mit zwei Invasionsproteinen an einen Rezeptor auf menschlichen Zellen und lassen sich in die Zelle einschleusen. Diese Eintrittskarte ist eigentlich für Faktoren reserviert, die das Zellwachstum und die Wundheilung steuern. Ihre Ergebnisse haben die Forscher jetzt in der aktuellen Ausgabe des Wissenschaftsmagazins „Journal of Molecular Biology“ veröffentlicht.

Mit Listerien infizieren wir uns über verdorbene Nahrungsmittel. Besonders gefährlich sind sie für Schwangere, Neugeborene und Menschen mit schwachem Immunsystem. Zuerst überwindet der Krankheitserreger die Darmwand und gelangt so in den Körper. Für die weitere Verbreitung ist dann das Invasionsprotein „Internalin B“ der Schlüssel. Dieses Protein auf der Oberfläche der Bakterien erkennt das passende Schloss, einen Rezeptor namens Met auf der Wirtszelle und aktiviert es. Daraufhin nehmen die Wirtszellen die Bakterien auf. In den Zellen nutzen die Listerien deren Nährstoffe und sind vor einer Immunantwort weitestgehend geschützt.

Bislang wussten die Forscher nicht, wie das bakterielle Protein den menschlichen Rezeptor aktiviert. Um dies zu untersuchen, klärten die HZI-Wissenschaftler zunächst die Strukturen von Internalin B allein sowie im Komplex mit Met auf. „Mithilfe der Röntgenstrukturanalyse fiel uns auf, dass sich in den erhaltenen Proteinkristallen jeweils zwei Internalin B-Moleküle auf typische Weise aneinander lagerten“, sagt Hartmut Niemann, Juniorprofessor an der Universität Bielefeld. Professor Dirk Heinz, Leiter des Bereichs Strukturbiologie am HZI erklärt: „Daraus entstand die Idee, dass ein solches Dimer – also zwei zusammen gelagerte Internalin-Moleküle – für die Aktivierung des Rezeptors eine entscheidende Rolle spielen könnte.“

Ein paar kleinere chemische Veränderungen an den Internalin B-Molekülen bestätigten die These der Wissenschaftler: Verhinderten sie das Zusammenlagern zum Dimer, aktivierte das Internalin den Met-Rezeptor auf menschlichen Zellen nur schwach. Bauten sie hingegen feste Brücken zwischen zwei Internalin B-Molekülen ein, fiel die Aktivierung ungewöhnlich stark aus.

Diese Ergebnisse könnten in Zukunft auch zu neuen Medikamenten führen. „Met spielt im Körper zum Beispiel bei der Wundheilung eine wichtige Rolle“, sagt Heinz. „Dank der besonderen Eigenschaft des Internalin B-Dimers, Met sehr stark zu aktivieren, könnten daraus einmal neue Medikamente für eine bessere Wundheilung entstehen“.

Originalartikel: Ligand-Mediated Dimerization of the Met Receptor Tyrosine Kinase by the Bacterial Invasion Protein InlB. Davide M. Ferraris, Ermanno Gherardi, Ying Di, Dirk W. Heinz and Hartmut H. Niemann. J Mol Biol. 2009 Nov 6. [Epub ahead of print]. doi:10.1016/j.jmb.2009.10.074

Schauen Sie zu dem Thema auch unseren Film unter http://www.helmholtz-hzi.de/de/presse_und_oeffentlichkeit/medienangebot/tvfootage/detail/film/show/internalin-1/

Media Contact

Dr. Bastian Dornbach Helmholtz-Zentrum

Weitere Informationen:

http://www.helmholtz-hzi.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer