Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dopamin hinterlässt Spuren im Hirnscanner

21.11.2014

BOLD-Signale bei der funktionellen Magnetresonanztomografie lassen nicht immer Rückschluss auf die Aktivität von Nervenzellen zu

Um herauszufinden, welche Bereiche des Gehirns bei bestimmten Aufgaben aktiv werden, nutzen Forscher die funktionelle Magnetresonanztomografie (fMRT). Die Methode misst, in welchen Gebieten des Gehirns sich der Sauerstoffgehalt des Bluts ändert und zeigt damit indirekt an, welche Zellen gerade besonders aktiv sind.


Dopamin verändert das sogenannte BOLD-Signal im MRT:

Links: Ist die Sehrinde des Gehirns aktiv, steigt ohne Dopamin das BOLD-Signal an. Auch die Aktivität der Gamma-Wellen, einzelner Gruppen von Nervenzellen (MUA) sowie des Blutflusses in dem Areal (CBF) nimmt zu.

Mitte: Unter dem Einfluss von Dopamin verringert sich das BOLD-Signal. Die Gamma-Wellen und die Aktivität der Nervenzellen bleibt jedoch konstant. Der Blutfluss steigt sogar.

Rechts: Aktive Regionen (rot) in der Sehrinde des Gehirns.

© MPI f. biologische Kybernetik/ D. Zaldivar

Forschern vom Max-Planck-Institut für biologische Kybernetik in Tübingen zufolge verändern jedoch Signalmoleküle wie Dopamin die Arbeitsweise der Nervenzellen und führen dazu, dass fMRT-Signale allein nicht mehr das wahre Aktivitätsmuster widerspiegeln. In Kombination mit der Messung der Gehirndurchblutung ergeben sich wesentlich präzisere Daten.

Wer viel arbeitet, atmet schwer. So ist das auch bei den Nervenzellen. Wenn Neuronen feuern, verbrauchen sie Sauerstoff aus dem Blut. Damit es zu keinem Mangel kommt, wird sofort sauerstoffhaltiges Blut im Überfluss in die aktiven Gehirnregionen geschickt. Dadurch erhöht sich in diesen Gebieten der Sauerstoffgehalt des Bluts. Im Hirnscanner wird genau dieser Vorgang als sogenanntes BOLD-Signal gemessen. Steigt die Aktivität der Nervenzellen, steigt das BOLD-Signal. Soweit die Theorie.

Doch zahlreiche Faktoren wie Stimmung, Alter, Medikamente oder verschiedene kognitive Zustände wie Aufmerksamkeit, Gedächtnis oder Belohnung verändern BOLD-Signale und stören dadurch die Interpretation der Ergebnisse. „Es gibt keine hundertprozentige Korrelation zwischen Nervenzellaktivität und BOLD, weshalb wir die Signale aus Hirnscannern bisher nur unzureichend interpretieren können“, erklärt Daniel Zaldivar vom Max-Planck-Institut für biologische Kybernetik den Ausgangspunkt seiner Forschung. Gemeinsam mit Kollegen hat er bei Makaken untersucht, wie die Nervenzellen in der Sehrinde auf visuelle Reize reagieren, wenn das Gehirn gleichzeitig unter dem Einfluss von Dopamin steht. Das überraschende Ergebnis: Obwohl die Aktivität der Nervenzellen ansteigt, sinkt das BOLD-Signal um etwa 50 Prozent und gaukelt dem Betrachter eines Hirnscans somit vor, dass diese Neuronen weniger aktiv wären.

„Vermutlich führt das Dopamin dazu, dass von den aktiven Zellen mehr Sauerstoff verbraucht wird als mit dem Blut nachfließen kann“, erläutert Zaldivar. Paradoxerweise heizt Dopamin die Nervenzellaktivität also dermaßen an, dass das BOLD-Signal die entgegengesetzte Aussage liefert. Unter dem Einfluss von Neuromodulatoren und wahrscheinlich auch andere Neuromodulatoren, reichen Veränderungen des BOLD-Signals allein demnach nicht aus, um Rückschlüsse auf die Aktivität der Nervenzellen zu ziehen.

Erst in Verbindung mit Messungen der Gehirndurchblutung ergibt sich das wahre Bild. Denn unter dem Einfluss von Dopamin steigt den Wissenschaftlern zufolge auch der Blutfluss. Messungen der Hirndurchblutung in Kombination mit BOLD und neurophysiologischen Untersuchungen bieten folglich einen besseren Einblick in die Veränderungen des Energiestoffwechsels und erlauben dadurch zuverlässigere Aussage über die Aktivität von Nervenzellen.

„Wenn wir besser verstehen, wie sich BOLD-Signale unter dem Einfluss von Neuromodulatoren wie Dopamin verändern, können wir Hirnscans besser interpretieren und Störungen frühzeitig entdecken“, sagt Zaldivar. Ansonsten kann das bildgebende Verfahren zur falschen Behandlung führen, wenn ein Abfall des BOLD-Signals als Verringerung der Hirnaktivität verstanden wird.

Bei Schizophrenie-Patienten beispielsweise wird das Dopamin-System im Gehirn falsch reguliert. Wenn Wissenschaftler wissen, welchen Einfluss eine Dopamin-Schwemme auf die Bilder im Hirnscanner hat, könnte die Erkrankung frühzeitiger diagnostiziert werden. Das Gleiche trifft auch auf andere Neuromodulatoren zu. Die Ergebnisse der Wissenschaftler helfen dabei, die Diskrepanz zwischen der Änderung des Blutflusses und des Sauerstoffverbrauchs besser zu verstehen.


Ansprechpartner

Prof. Dr. Nikos K. Logothetis
Max-Planck-Institut für biologische Kybernetik, Tübingen

Telefon: +49 7071 601-651

Fax: +49 7071 601-652

E-Mail: nikos.logothetis@tuebingen.mpg.de

 
Dr. Daniel Zaldivar
Max-Planck-Institut für biologische Kybernetik, Tübingen

Telefon: +49 7071 601-657

E-Mail: Daniel.Zaldivar@tuebingen.mpg.de

 
Dr. Jozien Goense

Institute of Neuroscience & Psychology
University of Glasgow

E-Mail: Jozien.Goense@glasgow.ac.uk


Originalpublikation
Daniel Zaldivar, Alexander Rauch, Kevin Whittingstall, Nikos K. Logothetis, Jozien Goense

Dopamine-induced dissociation of BOLD and neural activity in macaque visual cortex

Current Biology, 20 November 2014

Prof. Dr. Nikos K. Logothetis | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften