Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dopamin hinterlässt Spuren im Hirnscanner

21.11.2014

BOLD-Signale bei der funktionellen Magnetresonanztomografie lassen nicht immer Rückschluss auf die Aktivität von Nervenzellen zu

Um herauszufinden, welche Bereiche des Gehirns bei bestimmten Aufgaben aktiv werden, nutzen Forscher die funktionelle Magnetresonanztomografie (fMRT). Die Methode misst, in welchen Gebieten des Gehirns sich der Sauerstoffgehalt des Bluts ändert und zeigt damit indirekt an, welche Zellen gerade besonders aktiv sind.


Dopamin verändert das sogenannte BOLD-Signal im MRT:

Links: Ist die Sehrinde des Gehirns aktiv, steigt ohne Dopamin das BOLD-Signal an. Auch die Aktivität der Gamma-Wellen, einzelner Gruppen von Nervenzellen (MUA) sowie des Blutflusses in dem Areal (CBF) nimmt zu.

Mitte: Unter dem Einfluss von Dopamin verringert sich das BOLD-Signal. Die Gamma-Wellen und die Aktivität der Nervenzellen bleibt jedoch konstant. Der Blutfluss steigt sogar.

Rechts: Aktive Regionen (rot) in der Sehrinde des Gehirns.

© MPI f. biologische Kybernetik/ D. Zaldivar

Forschern vom Max-Planck-Institut für biologische Kybernetik in Tübingen zufolge verändern jedoch Signalmoleküle wie Dopamin die Arbeitsweise der Nervenzellen und führen dazu, dass fMRT-Signale allein nicht mehr das wahre Aktivitätsmuster widerspiegeln. In Kombination mit der Messung der Gehirndurchblutung ergeben sich wesentlich präzisere Daten.

Wer viel arbeitet, atmet schwer. So ist das auch bei den Nervenzellen. Wenn Neuronen feuern, verbrauchen sie Sauerstoff aus dem Blut. Damit es zu keinem Mangel kommt, wird sofort sauerstoffhaltiges Blut im Überfluss in die aktiven Gehirnregionen geschickt. Dadurch erhöht sich in diesen Gebieten der Sauerstoffgehalt des Bluts. Im Hirnscanner wird genau dieser Vorgang als sogenanntes BOLD-Signal gemessen. Steigt die Aktivität der Nervenzellen, steigt das BOLD-Signal. Soweit die Theorie.

Doch zahlreiche Faktoren wie Stimmung, Alter, Medikamente oder verschiedene kognitive Zustände wie Aufmerksamkeit, Gedächtnis oder Belohnung verändern BOLD-Signale und stören dadurch die Interpretation der Ergebnisse. „Es gibt keine hundertprozentige Korrelation zwischen Nervenzellaktivität und BOLD, weshalb wir die Signale aus Hirnscannern bisher nur unzureichend interpretieren können“, erklärt Daniel Zaldivar vom Max-Planck-Institut für biologische Kybernetik den Ausgangspunkt seiner Forschung. Gemeinsam mit Kollegen hat er bei Makaken untersucht, wie die Nervenzellen in der Sehrinde auf visuelle Reize reagieren, wenn das Gehirn gleichzeitig unter dem Einfluss von Dopamin steht. Das überraschende Ergebnis: Obwohl die Aktivität der Nervenzellen ansteigt, sinkt das BOLD-Signal um etwa 50 Prozent und gaukelt dem Betrachter eines Hirnscans somit vor, dass diese Neuronen weniger aktiv wären.

„Vermutlich führt das Dopamin dazu, dass von den aktiven Zellen mehr Sauerstoff verbraucht wird als mit dem Blut nachfließen kann“, erläutert Zaldivar. Paradoxerweise heizt Dopamin die Nervenzellaktivität also dermaßen an, dass das BOLD-Signal die entgegengesetzte Aussage liefert. Unter dem Einfluss von Neuromodulatoren und wahrscheinlich auch andere Neuromodulatoren, reichen Veränderungen des BOLD-Signals allein demnach nicht aus, um Rückschlüsse auf die Aktivität der Nervenzellen zu ziehen.

Erst in Verbindung mit Messungen der Gehirndurchblutung ergibt sich das wahre Bild. Denn unter dem Einfluss von Dopamin steigt den Wissenschaftlern zufolge auch der Blutfluss. Messungen der Hirndurchblutung in Kombination mit BOLD und neurophysiologischen Untersuchungen bieten folglich einen besseren Einblick in die Veränderungen des Energiestoffwechsels und erlauben dadurch zuverlässigere Aussage über die Aktivität von Nervenzellen.

„Wenn wir besser verstehen, wie sich BOLD-Signale unter dem Einfluss von Neuromodulatoren wie Dopamin verändern, können wir Hirnscans besser interpretieren und Störungen frühzeitig entdecken“, sagt Zaldivar. Ansonsten kann das bildgebende Verfahren zur falschen Behandlung führen, wenn ein Abfall des BOLD-Signals als Verringerung der Hirnaktivität verstanden wird.

Bei Schizophrenie-Patienten beispielsweise wird das Dopamin-System im Gehirn falsch reguliert. Wenn Wissenschaftler wissen, welchen Einfluss eine Dopamin-Schwemme auf die Bilder im Hirnscanner hat, könnte die Erkrankung frühzeitiger diagnostiziert werden. Das Gleiche trifft auch auf andere Neuromodulatoren zu. Die Ergebnisse der Wissenschaftler helfen dabei, die Diskrepanz zwischen der Änderung des Blutflusses und des Sauerstoffverbrauchs besser zu verstehen.


Ansprechpartner

Prof. Dr. Nikos K. Logothetis
Max-Planck-Institut für biologische Kybernetik, Tübingen

Telefon: +49 7071 601-651

Fax: +49 7071 601-652

E-Mail: nikos.logothetis@tuebingen.mpg.de

 
Dr. Daniel Zaldivar
Max-Planck-Institut für biologische Kybernetik, Tübingen

Telefon: +49 7071 601-657

E-Mail: Daniel.Zaldivar@tuebingen.mpg.de

 
Dr. Jozien Goense

Institute of Neuroscience & Psychology
University of Glasgow

E-Mail: Jozien.Goense@glasgow.ac.uk


Originalpublikation
Daniel Zaldivar, Alexander Rauch, Kevin Whittingstall, Nikos K. Logothetis, Jozien Goense

Dopamine-induced dissociation of BOLD and neural activity in macaque visual cortex

Current Biology, 20 November 2014

Prof. Dr. Nikos K. Logothetis | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit

Antibiotikaresistenz zeigt sich durch Leuchten

28.03.2017 | Biowissenschaften Chemie