Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dopamin hinterlässt Spuren im Hirnscanner

21.11.2014

BOLD-Signale bei der funktionellen Magnetresonanztomografie lassen nicht immer Rückschluss auf die Aktivität von Nervenzellen zu

Um herauszufinden, welche Bereiche des Gehirns bei bestimmten Aufgaben aktiv werden, nutzen Forscher die funktionelle Magnetresonanztomografie (fMRT). Die Methode misst, in welchen Gebieten des Gehirns sich der Sauerstoffgehalt des Bluts ändert und zeigt damit indirekt an, welche Zellen gerade besonders aktiv sind.


Dopamin verändert das sogenannte BOLD-Signal im MRT:

Links: Ist die Sehrinde des Gehirns aktiv, steigt ohne Dopamin das BOLD-Signal an. Auch die Aktivität der Gamma-Wellen, einzelner Gruppen von Nervenzellen (MUA) sowie des Blutflusses in dem Areal (CBF) nimmt zu.

Mitte: Unter dem Einfluss von Dopamin verringert sich das BOLD-Signal. Die Gamma-Wellen und die Aktivität der Nervenzellen bleibt jedoch konstant. Der Blutfluss steigt sogar.

Rechts: Aktive Regionen (rot) in der Sehrinde des Gehirns.

© MPI f. biologische Kybernetik/ D. Zaldivar

Forschern vom Max-Planck-Institut für biologische Kybernetik in Tübingen zufolge verändern jedoch Signalmoleküle wie Dopamin die Arbeitsweise der Nervenzellen und führen dazu, dass fMRT-Signale allein nicht mehr das wahre Aktivitätsmuster widerspiegeln. In Kombination mit der Messung der Gehirndurchblutung ergeben sich wesentlich präzisere Daten.

Wer viel arbeitet, atmet schwer. So ist das auch bei den Nervenzellen. Wenn Neuronen feuern, verbrauchen sie Sauerstoff aus dem Blut. Damit es zu keinem Mangel kommt, wird sofort sauerstoffhaltiges Blut im Überfluss in die aktiven Gehirnregionen geschickt. Dadurch erhöht sich in diesen Gebieten der Sauerstoffgehalt des Bluts. Im Hirnscanner wird genau dieser Vorgang als sogenanntes BOLD-Signal gemessen. Steigt die Aktivität der Nervenzellen, steigt das BOLD-Signal. Soweit die Theorie.

Doch zahlreiche Faktoren wie Stimmung, Alter, Medikamente oder verschiedene kognitive Zustände wie Aufmerksamkeit, Gedächtnis oder Belohnung verändern BOLD-Signale und stören dadurch die Interpretation der Ergebnisse. „Es gibt keine hundertprozentige Korrelation zwischen Nervenzellaktivität und BOLD, weshalb wir die Signale aus Hirnscannern bisher nur unzureichend interpretieren können“, erklärt Daniel Zaldivar vom Max-Planck-Institut für biologische Kybernetik den Ausgangspunkt seiner Forschung. Gemeinsam mit Kollegen hat er bei Makaken untersucht, wie die Nervenzellen in der Sehrinde auf visuelle Reize reagieren, wenn das Gehirn gleichzeitig unter dem Einfluss von Dopamin steht. Das überraschende Ergebnis: Obwohl die Aktivität der Nervenzellen ansteigt, sinkt das BOLD-Signal um etwa 50 Prozent und gaukelt dem Betrachter eines Hirnscans somit vor, dass diese Neuronen weniger aktiv wären.

„Vermutlich führt das Dopamin dazu, dass von den aktiven Zellen mehr Sauerstoff verbraucht wird als mit dem Blut nachfließen kann“, erläutert Zaldivar. Paradoxerweise heizt Dopamin die Nervenzellaktivität also dermaßen an, dass das BOLD-Signal die entgegengesetzte Aussage liefert. Unter dem Einfluss von Neuromodulatoren und wahrscheinlich auch andere Neuromodulatoren, reichen Veränderungen des BOLD-Signals allein demnach nicht aus, um Rückschlüsse auf die Aktivität der Nervenzellen zu ziehen.

Erst in Verbindung mit Messungen der Gehirndurchblutung ergibt sich das wahre Bild. Denn unter dem Einfluss von Dopamin steigt den Wissenschaftlern zufolge auch der Blutfluss. Messungen der Hirndurchblutung in Kombination mit BOLD und neurophysiologischen Untersuchungen bieten folglich einen besseren Einblick in die Veränderungen des Energiestoffwechsels und erlauben dadurch zuverlässigere Aussage über die Aktivität von Nervenzellen.

„Wenn wir besser verstehen, wie sich BOLD-Signale unter dem Einfluss von Neuromodulatoren wie Dopamin verändern, können wir Hirnscans besser interpretieren und Störungen frühzeitig entdecken“, sagt Zaldivar. Ansonsten kann das bildgebende Verfahren zur falschen Behandlung führen, wenn ein Abfall des BOLD-Signals als Verringerung der Hirnaktivität verstanden wird.

Bei Schizophrenie-Patienten beispielsweise wird das Dopamin-System im Gehirn falsch reguliert. Wenn Wissenschaftler wissen, welchen Einfluss eine Dopamin-Schwemme auf die Bilder im Hirnscanner hat, könnte die Erkrankung frühzeitiger diagnostiziert werden. Das Gleiche trifft auch auf andere Neuromodulatoren zu. Die Ergebnisse der Wissenschaftler helfen dabei, die Diskrepanz zwischen der Änderung des Blutflusses und des Sauerstoffverbrauchs besser zu verstehen.


Ansprechpartner

Prof. Dr. Nikos K. Logothetis
Max-Planck-Institut für biologische Kybernetik, Tübingen

Telefon: +49 7071 601-651

Fax: +49 7071 601-652

E-Mail: nikos.logothetis@tuebingen.mpg.de

 
Dr. Daniel Zaldivar
Max-Planck-Institut für biologische Kybernetik, Tübingen

Telefon: +49 7071 601-657

E-Mail: Daniel.Zaldivar@tuebingen.mpg.de

 
Dr. Jozien Goense

Institute of Neuroscience & Psychology
University of Glasgow

E-Mail: Jozien.Goense@glasgow.ac.uk


Originalpublikation
Daniel Zaldivar, Alexander Rauch, Kevin Whittingstall, Nikos K. Logothetis, Jozien Goense

Dopamine-induced dissociation of BOLD and neural activity in macaque visual cortex

Current Biology, 20 November 2014

Prof. Dr. Nikos K. Logothetis | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung
26.07.2017 | Universität Bielefeld

nachricht Akute myeloische Leukämie (AML): Neues Medikament steht kurz vor der Zulassung in Europa
26.07.2017 | Universitätsklinikum Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops