DNA als zukünftige elektronische Komponente?

Metallisierte, leitfähige DNA könnte in Zukunft als Komponente in elektronischen Bauteilen verwendet werden. (c) Wiley-VCH<br>

Unsere elektronischen Geräte werden immer kleiner und können gleichzeitig immer mehr. Mit den konventionellen Materialien ist die Grenze jedoch bald erreicht. Für die Elektronik von Morgen müssen Alternativen her, beispielsweise Nanodrähte aus DNA, die als Leiterbahnen und Nanotransistoren für Schaltkreise in Miniaturformat dienen könnten. Deutsche Wissenschaftler beschreiben in der Zeitschrift Angewandte Chemie eine neue Methode zu Herstellung stabiler, leitfähiger DNA-Nanodrähte.

DNA ist nicht nur Träger unserer Erbinformationen, sie ist auch ein interessanter Baustoff für die Nanotechnologie. Grund sind ihre außergewöhnlichen Selbstorganisationseigenschaften. So wird DNA oft als „Gussform“ für die Herstellung nanoskaliger Strukturen verwendet. Soll sie zum Aufbau von elektronischen Schaltkreisen verwendet werden, steht man allerdings vor dem Problem, dass DNA elektrischen Strom nur sehr schlecht leitet. Ein Ausweg ist die Abscheidung von Metall auf den DNA-Strängen.

Wissenschaftler von der RWTH Aachen und der Universität München haben nun eine neue Strategie entwickelt, um DNA-Nanostrukturen kontrolliert herzustellen und zu metallisieren. Das Team um Ulrich Simon verwendet dazu einen DNA-Strang, der aus einer Immobilisierungs- und einer Metallisierungssequenz besteht. Mehrere solcher Stränge werden aneinander gehängt, sodass die entstehende DNA beide Abschnitte abwechselnd enthält.

Die Immobilisierungssequenz trägt Alkingruppen. Über diese lässt sich die DNA an einem mit Azidgruppen bestückten Siliciumwafer mit einer als „Klickchemie“ bezeichneten Reaktion fast wie mit einem Druckknopf befestigen. Der andere DNA-Abschnitt hat zwei Aufgaben. Er wird mit funktionellen Gruppen ausgestattet, an denen sich Silberteilchen anlagern. Gleichzeitig können sie DNA-Stränge untereinander verknüpfen.

Die DNA-Stränge werden gestreckt, auf die Wafer aufgetragen und per „Klick“ daran befestigt. Während der anschließenden Metallisierung mit Silberteilchen kommt es gleichzeitig zu einer Vernetzung benachbarter Stränge, sodass sich Multistränge bilden. Sie zeigen eine deutlich höhere strukturelle Stabilität als Einzelstränge. In der Zukunft könnten die DNA-Stränge auf diese Weise aber auch in programmierbare DNA-Architekturen integriert werden, um eine Positionierung und Anbindung komplexer Strukturen auf vorstrukturierten Substraten zu ermöglichen.

Die Metallisierung ist mit der Anlagerung der Silberteilchen aber noch nicht abgeschlossen. In einem zweiten Schritt, der dem photographischen Entwicklungsprozess ähnelt, kann Gold aus einer Lösung an den Silberteilchen abgeschieden werden. Über die Dauer der Goldabscheidung kann der Durchmesser der Nanodrähte variiert werden.

Mit der neuen Methode erhielten die Wissenschaftler mikrometerlange, elektrisch kontaktierbare Nanodrähte, die das Potenzial für die Herstellung weiter miniaturisierter Schaltkreise haben.

Angewandte Chemie: Presseinfo 25/2012

Autor: Ulrich Simon, RWTH Aachen University (Germany), http://www.ac.rwth-aachen.de/extern/ak-simon/ulrich_simon.htm

Angewandte Chemie, Permalink to the article: http://dx.doi.org/10.1002/ange.201202401

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany

Media Contact

Dr. Renate Hoer GDCh

Weitere Informationen:

http://presse.angewandte.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer