Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

DNA-Synthese von Bakterien mit bloßem Auge beobachten

27.03.2012
Leibniz-Institut DSMZ führt neueste Sequenziertechnologie in die Diversitätsforschung ein

Das Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH nutzt als erste wissenschaftliche Einrichtung in Niedersachsen die neueste Sequenziertechnologie. Es handelt sich um das Sequenziersystem PacBio RS, einen Sequenzierer der „dritten Generation“, der eine neuartige Technik der Einzelmolekül-Sequenzierung verwendet (single molecule resolution, SMRT-Technologie).

Ein vergleichbares Gerät wurde im September 2011 am Max-Delbrück-Centrum für Molekulare Medizin in Berlin durch Bundeskanzlerin Angela Merkel eingeweiht. Mit dem PacBio RS-System ist es möglich, einzelne DNS- Moleküle in Echtzeit zu sequenzieren und einen tieferen Einblick in die Genregulation von Mikroorganismen zu bekommen. Das Gerät erlaubt es zukünftig, Sequenzierungen von Genomen und Transkriptomen von Bakterien und Virussequenzen durchzuführen und bildet die Basis der neuen genomanalytisch-orientierten Forschungsarbeiten am Leibniz-Institut DSMZ.

„Die schnelle und kostengünstige Analyse der Genomsequenzen von Mikroorganismen mit dem neuen Sequenzierer eröffnet uns in der Diversitätsforschung völlig neue Möglichkeiten“, erläutert Prof. Overmann, Wissenschaftlicher Direktor des Leibniz-Instituts DSMZ und Leiter der Forschungsgruppe Mikrobielle Diversität.

„Die geschätzte Zahl von Bakterien auf der Erde liegt zwischen einer Million und einer einer Milliarde. Sie sind nicht nur Krankheitserreger, sondern auch Produzenten wichtiger Wirkstoffe, spielen eine Rolle in globalen Stoffkreisläufen und sind relevant für das Verständnis der Entwicklung und Vielfalt des Lebens. Derzeit sind etwa 9.400 Bakterienarten beschrieben und es stehen nur etwa 2.000 vollständige oder nahezu vollständige Genomsequenzen von Bakterien für die Forschung zur Verfügung“, sagt er.

„Werden neuartige bakterielle Genome entschlüsselt, so können wir damit schließlich auch neue Genfunktionen aufdecken und das Zusammenspiel verschiedener Gene bei biologischen Vorgängen besser verstehen“, erklärt Prof. Overmann weiter. „Vollständige genomische Daten geben uns Informationen über mögliche Stoffwechselwege oder Wirkstoffe, die die Mikroben produzieren. Hier liegen noch große Potentiale für die Medizinische Forschung, die Umweltforschung und die Industrie.“

Wodurch unterscheidet sich die neue Sequenziertechnologie von gängigen Methoden? „Im Gegensatz zu den bislang verfügbaren Technologien, ist es mit dem PacBio RS erstmals möglich, einzelne DNA-Moleküle direkt zu sequenzieren. Der neuartige Sequenzierer liest die Abfolge, die sogenannte „Sequenz“ der DNS-Bausteine (Basen) in Echtzeit, und macht die Reaktion eines einzelnen Enzyms mit einem einzelnen DNS-Moleküls mit Hilfe eines Lasers sichtbar. Man kann sozusagen mit „bloßem Auge“ zuschauen, wie die DNS synthetisiert wird", sagt Prof. Overmann. „Ungewöhnlich große Fragmente genomischer DNS werden so in weniger als 1,5 Stunden sequenziert.“

Das Gerät kann im Schnitt mehr als 3.100 Basen ununterbrochen lesen und eine komplexe, mikrobielle Genomsequenzierung in einem Tag abschließen, die zuvor eine Woche oder länger dauerte. „So ist es zukünftig möglich, in nur acht Stunden etwa 300.000 bakterielle Sequenzen aus komplexen Proben zu analysieren. Das kann etwa bei einer Umweltbodenprobe mit einer geschätzten Zahl von 50.000 Bakterienarten die Frage schneller lösen, welche Bakterien eine Rolle für die Bodenfruchtbarkeit spielen“, erläutert Prof. Overmann.

Eine Herausforderung stellen die ungeheuren Datenmengen von etwa zwei Terabyte Rohdaten dar, die ein Sequenzierlauf mit der neuen Technologie erzeugt. Genug um zwei Festplatten modernster Computer zu füllen. Diese Datenflut wird mit Hilfe der Mathematik und Informatik und besonders leistungsstarken Rechnern von einem Team um Dr. Boyke Bunk, Bioinformatiker am Leibniz-Institut DSMZ, ausgewertet.

Ein neues Forschungsprojekt basierend auf der neuen Sequenzierplattform startete vor kurzem am Leibniz-Institut DSMZ. Die Wissenschaftlerin Dr. Cathrin Spröer analysiert verschiedene Stämme des Bakteriums Sphingomonas, welche durch ihre Fähigkeit bekannt sind, viele verschiedene, teils giftige Aromaten abzubauen und daher für Bodensanierungen eingesetzt werden könnten.

Sie finden diese Pressemitteilung in deutscher und englischer Sprache und Bildmaterial auf unserer Internetseite www.dsmz.de. oder direkt unter http://goo.gl/j9f55.

Das Leibniz-Institut DSMZ berichtet auch seit einiger Zeit auch auf Facebook über Aktuelles und Wissenswertes aus dem Institut unter http://www.facebook.com/Leibniz.DSMZ.

Hinweis für Journalisten:
Unsere Experten demonstrieren Ihnen sehr gern die neue Technologie im „realen Experiment“ für Foto- oder Filmaufnahmen. Bitte melden Sie sich freundlicherweise rechtzeitig an, da komplexe Vorbereitungen nötig sind.
Über das Leibniz-Institut DSMZ
Das Leibniz-Institut DSMZ–Deutsche Sammlung von Mikroorganismen und Zellkulturen – ist eine Einrichtung der Leibniz-Gemeinschaft und mit seinen umfangreichen wissenschaftlichen Services und einem breiten Spektrum an biologischen Materialien seit Jahrzehnten weltweiter Partner für Forschung und Industrie. Als einem der größten biologischen Ressourcenzentren seiner Art wurde der DSMZ die Übereinstimmung mit dem weltweit gültigen Qualitätsstandard ISO 9001:2008 bestätigt. Neben dem wissenschaftlichen Service bildet die sammlungsbezogene Forschung das zweite Standbein der DSMZ. Die Sammlung mit Sitz in Braunschweig existiert seit 42 Jahren und beherbergt mehr als 30.000 Kulturen und Biomaterialien. Die DSMZ ist die vielfältigste Sammlung weltweit: neben Pilzen, Hefen, Bakterien und Archaea werden dort auch menschliche und tierische Zellkulturen sowie Pflanzenviren und pflanzliche Zellkulturen erforscht und archiviert.
Über PacBio RS
Der PACBio RS- Sequenzierer ist ein Gerät mit hoher Sequenzausbeute, der in der Lage ist, ohne weitere Amplifikationsschritte Sequenzierungen auf Einzelmolekülbasis durchzuführen und mit dem darüber hinaus lange Leseweiten von 3.100 bp und 15.000 bp (maximum read length) in den Genomregionen erreicht werden können. Das neue Gerät (PacBio RS System) wurde von Pacific Biosciences, einem Technologieunternehmen in Menlo Park, Californien, USA, im April 2011 auf den Markt gebracht. www.pacificbiosciences.com

Pressekontakt:

Susanne Thiele
Dipl.-Biol.
Leiterin der Presse- und Öffentlichkeitsarbeit
Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH
Inhoffenstraße 7 B
38124 Braunschweig
Germany
Tel. ++49531-2616-300
Fax ++49531-2616-418
susanne.thiele@dsmz.de

Susanne Thiele | idw
Weitere Informationen:
http://www.dsmz.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Geckos kommunizieren überraschend flexibel
29.05.2017 | Max-Planck-Institut für Ornithologie

nachricht Bauchspeicheldrüsenkrebs: Forschungsgruppe erprobt erfolgreich neue Diagnose- und Therapieansätze
29.05.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

49. eucen-Konferenz zum Thema Lebenslanges Lernen an Universitäten

29.05.2017 | Veranstaltungen

Internationale Konferenz an der Schnittstelle von Literatur, Kultur und Wirtschaft

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligente Sensoren mit System

29.05.2017 | Messenachrichten

Geckos kommunizieren überraschend flexibel

29.05.2017 | Biowissenschaften Chemie

1,5 Millionen Euro für vier neue „Innovative Training Networks” an der Universität Hamburg

29.05.2017 | Förderungen Preise