Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

DNA-Schnipsel hilft bei Blutvergiftungen

30.04.2009
Bei schweren Blutvergiftungen kann eine Gabe von aktiviertem Protein C (APC) Leben retten. Das entzündungshemmende Enzym erfüllt in jedem Menschen noch eine weitere wichtige Funktion: Während der Wundheilung löst APC unerwünschte kleine Gerinnsel auf, die Adern und Organe verstopfen könnten.

Unter Umständen drohen dann schwere Blutungen. Forscher der Universität Bonn berichten nun in der aktuellen Ausgabe der Fachzeitschrift "Chemistry & Biology", dass sie einen molekularen Schlüssel gefunden haben, der APC nach Bedarf abschalten kann.

Ein unachtsamer Moment beim Zwiebelschneiden, und schon blutet der Finger. Selbst bei winzigen Wunden wird im Blutkreislauf eine komplizierte Gerinnungskaskade in Gang gesetzt. An dessen Ende verschließt ein Gerinnsel aus Fibrin und Blutplättchen die Verletzung und stoppt die Blutung. Diese Kaskade soll aber nicht über das Ziel hinausschießen. Sonst droht das verklumpte Blut in Form von Gerinnseln Adern zu verstopfen.

Um das zu verhindern, hat der Körper im Laufe der Evolution verschiedene Systeme entwickelt, die der Gerinnung und möglichen Thrombosen entgegenwirken. Zum Beispiel wird das im Blut gelöste Protein C immer dann aktiv, wenn Gerinnungsfaktoren an nicht beschädigte Blutgefäßzellen binden. Das aktivierte Protein C (APC) spaltet dann die Gerinnungsfaktoren und verhindert somit eine weitere Verklumpung des Blutes.

Gleichzeitig hat das aktivierte Protein C noch eine weitere Funktion: Es schützt Körperzellen vor Infektionen. Diese entzündungshemmende Eigenschaft haben sich Mediziner für schwere Fälle von Blutvergiftungen zunutze gemacht, indem sie den Patienten eine Dosis APC injizieren. Leider vertragen manche Patienten diese Maßnahme schlecht. Die Gerinnung wird bei ihnen durch das APC derart gehemmt, dass es zu Blutungskomplikationen kommt.

DNA-Schnipsel als Schalter

Zusammen mit dem Chemiker Dr. Günter Mayer vom Kekulé-Institut für Organische Chemie und Biochemie hat das Team um Dr. Bernd Pötzsch vom Institut für experimentelle Hämatologie im Labor lange getüftelt. Jetzt könnten sie nach zahlreichen molekularen Selektionsverfahren ein Werkzeug gefunden haben, mit dem sich APC einfach wieder deaktivieren lässt: Ein so genanntes Aptamer, ein synthetisch hergestellter DNA-Schnipsel. Dank seiner speziellen dreidimensionalen Struktur kann es genau an eine bestimmte Region des APC andocken. Dadurch wird die gerinnungshemmende Funktion des Enzyms selbst gehemmt. Die zellschützende, entzündungshemmende Funktion bleibt in seiner Wirkung dagegen unbeeinflusst. "Das Molekül, das wir hergestellt haben, ließe sich als Gegenmittel einsetzen, wenn es bei einem mit APC behandelten Patienten zu einer akuten Blutung kommt", so Studienleiter Bernd Pötzsch.

Das Entscheidende an dem Aptamer-Molekül sei, dass es die aktivierte Form des Protein C sehr spezifisch erkennen könne, ergänzt Pötzschs Kollege Dr. Jens Müller. Das ist ein Kunststück: Die inaktivierte Form unterscheidet sich vom aktivierten Protein allein durch 12 Aminosäuren. Durch die hohe Bindungsspezifität könne auch die jeweilige Anzahl des APC im Körper recht genau bestimmt werden. Die Wissenschaftler glauben, mit dem Aptamer ein gutes Werkszeug zur Hand zu haben, mit dem sich die Interaktionen zwischen APC und verschiedenen anderen Proteinen und Rezeptorstellen studieren lassen: "Wenn man sehr gezielt einzelne Bestandteile des APC blockieren kann, zeigt sich, welche Regionen des Enzyms wichtig sind, um verschiedene Funktionen auszuführen", erläutert Pötzsch. "Und mit dem Wissen könnten wir dann vielleicht weitere Wirkstoffe gegen andere Krankheitssymptome herstellen."

Kontakt:Dr. Bernd Pötzsch
Universitätsklinikum Bonn
Institut für Exp. Hämatologie und Transfusionsmedizin
Telefon: 0228-287-16745
Email: bernd.poetzsch@ukb.uni-bonn.de
Dr. Jens Müller
Universitätsklinikum Bonn
Institut für Exp. Hämatologie und Transfusionsmedizin
Telefon: 0228-287-16735
Email: jens.mueller@ukb.uni-bonn.de
Dr. Günter Mayer
Life and Medical Sciences (LIMES), Program Unit Chemical Biology and Medicinal Chemistry, c/o Kekulé-Institute for Organic Chemistry und Biochemistry
Universität Bonn
Telefon: 0228-734808
Email: gmayer@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikroben hinterlassen "Fingerabdrücke" auf Mars-Gestein
17.10.2017 | Universität Wien

nachricht Partnervermittlung mit Konsequenzen
17.10.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mikroben hinterlassen "Fingerabdrücke" auf Mars-Gestein

17.10.2017 | Biowissenschaften Chemie

Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen

17.10.2017 | Physik Astronomie

Kaiserschnitt-Risiko ist vererbbar

17.10.2017 | Biowissenschaften Chemie